4.1\#6 (d) Consider the Heaviside function

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and

$$
g(x)= \begin{cases}0 & \text { if } x \geq 0 \\ 1 & \text { if } x<0\end{cases}
$$

Then f and g are both discontinuous at $x=0$. However,

$$
f(x) g(x)=0, \forall x \in(-\infty, \infty)
$$

In particular $f g$ is continuous on $(-\infty, \infty)$.
(e) Let f and g be as above. Then

$$
f(x)+g(x)=1, \forall x \in(-\infty, \infty)
$$

Thus $f+g$ is continuous on $(-\infty, \infty)$, even though f and g are not.
4.1\#8(a) (d) Since f is continuous at $x=a$, for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-f(a)|<\varepsilon \text { whenever }|x-a|<\delta, x \in D
$$

Note that this implies

$$
f(a)-\varepsilon<f(x)<f(a)+\varepsilon
$$

Since $f(a)>0$, we can choose $\varepsilon=\frac{f(a)}{2}>0$ above and obtain a $\delta>0$ such that

$$
f(a)-\frac{f(a)}{2}<f(x)<f(a)+\frac{f(a)}{2} \text { whenever }|x-a|<\delta, x \in D
$$

With this $\delta>0$, we then have

$$
\frac{f(a)}{2}<f(x) \text { whenever }|x-a|<\delta, x \in D
$$

which is the desired conclusion.
4.3\#1(a)
(i) $f(x)=1 / x$ is continuous on the bounded, open interval $(0,1)$. But f is unbounded.
(ii) $f(x)=x$ is continuous on the unbounded, closed interval $[0, \infty)$. But f is unbounded.
(iii) Define $f(x)=1 / x$ if $0<x \leq 1$ and $f(x)=0$ if $x=0$. Then $f(x)$ is a discontinuous function on the closed interval $[0,1]$, meanwhile f is unbounded.

