$4.3 \# 8$ (Visualize the proof on your scratch paper) Suppose f is continuous and one-to-one on $[a, b]$. We show that f must be strictly monotone. Without loss of generality, we assume that $f(a)<f(b)$. (The case $f(a)>f(b)$ can be treated similarly.)

First, observe that, for any $c \in(a, b)$ it must hold that $f(a)<f(c)<f(b)$. This is because otherwise, if $f(c)<f(a)(<f(b))$, we would then have, by the Intermediate Value Theorem, that there exists $d \in(c, b)$ such that $f(d)=f(a)$, contradicting the injectivity of f. If instead $f(c)>f(b)(>f(a))$, then we deduce a contradiction in a similar way. Note that $f(c)$ cannot equal $f(a)$ or $f(b)$ since f is one-to-one.

Now we can show that $f(x)<f(y)$ whenever $a<x<y<b$, thus proving that f is strictly increasing. Assume otherwise we have $f(x)>f(y)(>f(a))$. Then, by the Intermediate Value Theorem again, there exists $c \in(a, x)$ such that $f(c)=f(y)$, which contradicts the injectivity of f. This completes the proof.
4.4\#1(a) $f(x)=1 / x$ is not uniformly continuous on $(0,1]$. This is because, otherwise, by Corollary 4.4.8, f can be extended to be a continuous function on the closed interval $[0,1]$, which would then imply that f is bounded. However, it is easy to see that $f(x)=1 / x$ is not bounded on $(0,1]$.
4.3\#11 Since f is continuous and nonvanishing on $[a, b]$, by Exercise 4.1\#5, so is $|f|$. On the other hand, by Theorem 4.1.8(c), the function $1 /|f|$ is also continuous on $[a, b]$. Thus, by Theorem 4.3.4, $1 /|f|$ must be bounded on $[a, b]$, i.e. we have

$$
\frac{1}{|f(x)|} \leq M, \forall x \in[a, b]
$$

for some positive number M. Consequently,

$$
|f(x)| \geq \frac{1}{M}, \forall x \in[a, b]
$$

This shows that f is bounded away from zero on $[a, b]$.
4.4\#8(a) Suppose f is a Lipschitz function on I, i.e. there exists a constant $L>0$ such that

$$
|f(x)-f(y)| \leq L|x-y|, \quad \forall x, y \in I
$$

Then for any given $\varepsilon>0$, we can let

$$
\delta=\frac{\varepsilon}{L}
$$

so that, whenever $|x-y|<\delta$, we have

$$
|f(x)-f(y)| \leq L|x-y|<L \delta=L \cdot \frac{\varepsilon}{L}=\varepsilon
$$

By definition, this shows f is uniformly continuous on I.
(b) Consider $f(x)=\sqrt{x}$ on $[0,1]$. Then f is continuous on $[0,1]$, therefore is uniformly continuous on $[0,1]$ by Theorem 4.4.6. However, f is not Lipschitz on $[0,1]$. Indeed, if f were Lipschitz, i.e. there exists $L>0$ such that

$$
|f(x)-f(y)| \leq L|x-y|, \forall x, y \in[0,1] .
$$

Then taking $x=0$ and $y \in(0,1]$, we get

$$
\sqrt{y} \leq L y
$$

or

$$
1 \leq L \sqrt{y}
$$

This is not possible since the right-hand side tends to 0 as $y \rightarrow 0^{+}$.

