$\mathbf{5 . 1 \# 3}$ (d) By the definition of $f(x)$, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

The last limit equals 0 since $x \rightarrow 0$. Thus $f^{\prime}(0)=0$ (exists).
(e) By the definition of $f(x)$, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

The last limit does not exists. Thus f is not differentiable at 0 .
5.2\#5 By Theorem 5.2.1(a), $f \pm g$ are both differentiable at $x=a$. By Theorem 5.2.3, since $F(y)=y^{2}$ is differentiable at all y, it follows that $(f \pm g)^{2}$ are both differentiable at $x=a$. By Theorem 5.2.1(a), it then follows that

$$
f g=\frac{1}{4}(f+g)^{2}-\frac{1}{4}(f-g)^{2}
$$

is also differentiable at $x=a$; moreover

$$
\begin{aligned}
(f g)^{\prime}(a) & =\frac{1}{2}(f(a)+g(a))\left(f^{\prime}(a)+g^{\prime}(a)\right)-\frac{1}{2}(f(a)-g(a))\left(f^{\prime}(a)-g^{\prime}(a)\right) \\
& =f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
\end{aligned}
$$

A similar argument applies if one instead uses

$$
f g=\frac{1}{2}(f+g)^{2}-\frac{1}{2} f^{2}-\frac{1}{2} g^{2} .
$$

