
1. Find the limit. Use L’Hospital’s Rule where appropriate.

(a) lim
x→∞

xe−
√
x = 0

Solution: write xe−
√
x = x

e
√
x and apply L’Hospital’s Rule twice.

(b) lim
x→∞

x1/
√
x = 1

Solution: write x1/
√
x = e

ln x√
x and find the limit of the exponent (which equals 0).

(c) lim
x→0+

(1 + x)1/x
2

= ∞

Solution: write (1 + x)1/x
2

= e
ln(1+x)

x2 and find the limit of the exponent.

2. Evaluate the integral using integration by parts.

(a)

∫
t2e−tdt = −(t2 + 2t+ 2)e−t + C

Solution: integrate by parts twice with dv = e−tdt.

(b)

∫
x2 sin(10x)dx =

1

500

(
− 50x2 cos(10x) + 10x sin(10x) + cos(10x)

)
+ C

Solution: integrate by parts twice with dv = sin(10x)dx.

(c)

∫
e−x cos(10x)dx = −e

−x

101

(
cos(10x)− 10 sin(10x)

)
+ C

Solution: integrate by parts twice and use the trick of combining identical terms.

3. Evaluate the trig integral.

(a)

∫
tan2 xdx = tan(x)− x+ C

Solution: write tan2 x = sec2 x− 1 and notice that
∫

sec2 xdx = tanx+ C.

(b)

∫
sin3 xdx =

cos3 x

3
− cosx+ C

Solution: write sin3 x = (1− cos2 x) sinx and apply the substitution u = cosx.

(c)

∫
sec4 xdx =

tan3 x

3
+ tanx+ C



Solution: write sec4 x = (tan2 x+ 1) sec2 x and apply the substitution u = tanx.

4. Evaluate the integral using trig substitution.

(a)

∫
1

(1 + x2)3/2
dx =

x√
1 + x2

+ C

Solution: letting x = tan θ turns the integral into
∫

cos θdθ = sin θ + C. Now use a
θ-triangle to show that sin θ = x√

1+x2
.

(b)

∫ √
1− 4x2dx =

x
√

1− 4x2

2
+

arcsin(2x)

4
+ C

Solution: letting 2x = sin θ turns the integral into 1
2

∫
cos2 θdθ. Using the half-angle

formula this becomes sin(2θ)
8

+ θ
4
+C. Now use the double-angle formula sin(2θ) = 2 sin θ cos θ,

together with sin θ = 2x, cos θ =
√

1− 4x2, to get the answer.

(c)

∫
(4x2 − 1)3/2

x
dx =

(4x2 − 1)3/2

3
−
√

4x2 − 1 + arcsec(2x) + C

Solution: letting x = 1
2

sec θ turns the integral into
∫

tan4 θdθ. Writing tan4 θ =

(sec2 θ− 1) tan2 θ = sec2 θ tan2 θ− (sec2 θ− 1), this integral becomes tan3 θ
3
− (tan θ) + θ+C.

Since tan θ =
√

4x2 − 1, the answer follows.

5. Evaluate the integral using partial fractions.

(a)

∫
x3

1 + x2
dx =

x2

2
− 1

2
ln(1 + x2) + C

Solution: long division gives x3 = x(1 + x2) − x, and therefore x3

1+x2
= x − x

1+x2
.

Integrating the last expression gives the answer.

(b)

∫
x+ 1

x2 − x
dx = 2 ln |x− 1| − ln |x|+ C

Solution: use partial fractions to write x+1
x2−x = 2

x−1−
1
x
. Integrating this gives the answer.

(c)

∫
x2 + 1

x3 − 2x2 + x
dx = − 2

x− 1
+ ln |x|+ C

Solution: use partial fractions to write x2+1
x3−2x2+x = 2

(x−1)2 + 1
x
. Integrating this gives the

answer.

6. Evaluate the improper integral, if it is convergent.

(a)

∫ ∞
0

1 + x

1 + x2
dx = ∞



Solution: write the integral as
∫∞
0

1
1+x2

dx+
∫∞
0

x
1+x2

dx. The former equals [arctan x]∞0 =
π
2

and the latter equals [1
2

ln(1 + x2)]∞0 =∞. The answer follows by summing the two.

(b)

∫ 1/e

0

1

x(lnx)2
dx = 1

Solution: letting u = lnx, the integral becomes
∫ −1
−∞

1
u2
du = [− 1

u
]−1−∞ = 1− 0 = 1.

(c)

∫ π/2

0

1

cosx
dx = ∞

Solution:
∫ π/2
0

1
cosx

dx =
∫ π/2
0

secxdx =
[

ln | secx+ tanx|
]π/2
0

= ln |∞+∞| − 0 =∞.

7. The region enclosed by the given curves is rotated about the x-axis. Find the volume of
the resulting solid using cross-sections.

(a) y = |x|, y = 2− x2

Solution: the two curves intersect at x = ±1 and the curve y = 2−x2 provides the outer
radii. So the volume equals

∫ 1

−1 π
[
(2 − x2)2 − |x|2

]
dx. Now write (2 − x2)2 = 4 − 4x2 + x4

and |x|2 = x2 to get the volume =
76

15
π .

(b) y = cosx, y = sinx, 0 ≤ x ≤ π/4

Solution: y = cosx provides the outer radii. So the volume equals
∫ π/4
0

π
[
(cosx)2 −

(sinx)2
]
dx = π

∫ π/4
0

cos(2x)dx =
π

2
.

8. Use the method of cylindrical shells to find the volume generated by rotating about the
y-axis the region bounded by the given curves.

(a) y = |x|, y = 2− x2

Solution: the two curves intersect at x = ±1 and y = 2 − x2 is the upper curve. By
symmetry we can drop the portion of the region with negative x-component. So the volume

equals
∫ 1

0
2πx

[
(2− x2)− x

]
dx =

5

6
π .

(b) y =
√
x2 + 1, y = 0, x = 0, x = 1

Solution: the volume equals
∫ 1

0
2πx
√
x2 + 1dx =

2π

3
(23/2 − 1) .

9. Find the arc length of the curve.

(a) ln(cosx), 0 ≤ x ≤ π/4



Solution: since [ln(cosx)]′ = − tanx, the arc length equals
∫ π/4
0

√
1 + tan2 xdx =∫ π/4

0
secxdx =

[
ln | secx+ tanx|

]π/4
0

= ln(
√

2 + 1) .

(b) y =
x2

4
− lnx

2
, 1 ≤ x ≤ 2

Solution: note that 1 + [dy/dx]2 = 1 + (x
2
− 1

2x
)2 = (x

2
+ 1

2x
)2. Therefore the arc length

equals
∫ 2

1

√
1 + [dy/dx]2dx =

∫ 2

1
(x
2

+ 1
2x

)dx = [x
2

4
+ lnx

2
]21 =

3

4
+

ln 2

2
.

10. Find the area of the surface obtained by rotating the curve about the specified axis.

(a) y =
√

1 + ex, 0 ≤ x ≤ 1; about the x-axis

Solution: the surface area equals
∫ 1

0
2πyds =

∫ 1

0
2π
√

1 + ex
√

1 + ( ex

2
√
1+ex

)2dx. Com-

bining the square roots the integrand becomes 2π
√

(1 + ex) + e2x

4
= π
√

4 + 4ex + e2x =

π
√

(2 + ex)2 = π(2 + ex). So the area equals
∫ 1

0
π(2 + ex)dx = (1 + e)π .

(b) y =
x2

4
− lnx

2
, 1 ≤ x ≤ 2; about the y-axis

Solution: the surface area equals
∫ 2

1
2πxds =

∫ 2

1
2πx

√
1 + [dy/dx]2dx. By the compu-

tation in 9(b), this equals
∫ 2

1
2πx(x

2
+ 1

2x
)dx =

10

3
π .


