1. Find the limit. Use L'Hospital's Rule where appropriate.
(a) $\lim _{x \rightarrow \infty} x e^{-\sqrt{x}}=0$

Solution: write $x e^{-\sqrt{x}}=\frac{x}{e \sqrt{x}}$ and apply L'Hospital's Rule twice.
(b) $\lim _{x \rightarrow \infty} x^{1 / \sqrt{x}}=1$

Solution: write $x^{1 / \sqrt{x}}=e^{\frac{\ln x}{\sqrt{x}}}$ and find the limit of the exponent (which equals 0).
(c) $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x^{2}}=\infty$

Solution: write $(1+x)^{1 / x^{2}}=e^{\frac{\ln (1+x)}{x^{2}}}$ and find the limit of the exponent.
2. Evaluate the integral using integration by parts.
(a) $\int t^{2} e^{-t} d t=-\left(t^{2}+2 t+2\right) e^{-t}+C$

Solution: integrate by parts twice with $d v=e^{-t} d t$.
(b) $\int x^{2} \sin (10 x) d x=\frac{1}{500}\left(-50 x^{2} \cos (10 x)+10 x \sin (10 x)+\cos (10 x)\right)+C$

Solution: integrate by parts twice with $d v=\sin (10 x) d x$.
(c) $\int e^{-x} \cos (10 x) d x=-\frac{e^{-x}}{101}(\cos (10 x)-10 \sin (10 x))+C$

Solution: integrate by parts twice and use the trick of combining identical terms.
3. Evaluate the trig integral.
(a) $\int \tan ^{2} x d x=\tan (x)-x+C$

Solution: write $\tan ^{2} x=\sec ^{2} x-1$ and notice that $\int \sec ^{2} x d x=\tan x+C$.
(b) $\int \sin ^{3} x d x=\frac{\cos ^{3} x}{3}-\cos x+C$

Solution: write $\sin ^{3} x=\left(1-\cos ^{2} x\right) \sin x$ and apply the substitution $u=\cos x$.
(c) $\int \sec ^{4} x d x=\frac{\tan ^{3} x}{3}+\tan x+C$

Solution: write $\sec ^{4} x=\left(\tan ^{2} x+1\right) \sec ^{2} x$ and apply the substitution $u=\tan x$.
4. Evaluate the integral using trig substitution.
(a) $\int \frac{1}{\left(1+x^{2}\right)^{3 / 2}} d x=\frac{x}{\sqrt{1+x^{2}}}+C$

Solution: letting $x=\tan \theta$ turns the integral into $\int \cos \theta d \theta=\sin \theta+C$. Now use a θ-triangle to show that $\sin \theta=\frac{x}{\sqrt{1+x^{2}}}$.
(b) $\int \sqrt{1-4 x^{2}} d x=\frac{x \sqrt{1-4 x^{2}}}{2}+\frac{\arcsin (2 x)}{4}+C$

Solution: letting $2 x=\sin \theta$ turns the integral into $\frac{1}{2} \int \cos ^{2} \theta d \theta$. Using the half-angle formula this becomes $\frac{\sin (2 \theta)}{8}+\frac{\theta}{4}+C$. Now use the double-angle formula $\sin (2 \theta)=2 \sin \theta \cos \theta$, together with $\sin \theta=2 x, \cos \theta=\sqrt{1-4 x^{2}}$, to get the answer.
(c) $\int \frac{\left(4 x^{2}-1\right)^{3 / 2}}{x} d x=\frac{\left(4 x^{2}-1\right)^{3 / 2}}{3}-\sqrt{4 x^{2}-1}+\operatorname{arcsec}(2 x)+C$

Solution: letting $x=\frac{1}{2} \sec \theta$ turns the integral into $\int \tan ^{4} \theta d \theta$. Writing $\tan ^{4} \theta=$ $\left(\sec ^{2} \theta-1\right) \tan ^{2} \theta=\sec ^{2} \theta \tan ^{2} \theta-\left(\sec ^{2} \theta-1\right)$, this integral becomes $\frac{\tan ^{3} \theta}{3}-(\tan \theta)+\theta+C$. Since $\tan \theta=\sqrt{4 x^{2}-1}$, the answer follows.
5. Evaluate the integral using partial fractions.
(a) $\int \frac{x^{3}}{1+x^{2}} d x=\frac{x^{2}}{2}-\frac{1}{2} \ln \left(1+x^{2}\right)+C$

Solution: long division gives $x^{3}=x\left(1+x^{2}\right)-x$, and therefore $\frac{x^{3}}{1+x^{2}}=x-\frac{x}{1+x^{2}}$. Integrating the last expression gives the answer.
(b) $\int \frac{x+1}{x^{2}-x} d x=2 \ln |x-1|-\ln |x|+C$

Solution: use partial fractions to write $\frac{x+1}{x^{2}-x}=\frac{2}{x-1}-\frac{1}{x}$. Integrating this gives the answer.
(c) $\int \frac{x^{2}+1}{x^{3}-2 x^{2}+x} d x=-\frac{2}{x-1}+\ln |x|+C$

Solution: use partial fractions to write $\frac{x^{2}+1}{x^{3}-2 x^{2}+x}=\frac{2}{(x-1)^{2}}+\frac{1}{x}$. Integrating this gives the answer.
6. Evaluate the improper integral, if it is convergent.
(a) $\int_{0}^{\infty} \frac{1+x}{1+x^{2}} d x=\infty$

Solution: write the integral as $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x+\int_{0}^{\infty} \frac{x}{1+x^{2}} d x$. The former equals $[\arctan x]_{0}^{\infty}=$ $\frac{\pi}{2}$ and the latter equals $\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{\infty}=\infty$. The answer follows by summing the two.
(b) $\int_{0}^{1 / e} \frac{1}{x(\ln x)^{2}} d x=1$

Solution: letting $u=\ln x$, the integral becomes $\int_{-\infty}^{-1} \frac{1}{u^{2}} d u=\left[-\frac{1}{u}\right]_{-\infty}^{-1}=1-0=1$.
(c) $\int_{0}^{\pi / 2} \frac{1}{\cos x} d x=\infty$

Solution: $\int_{0}^{\pi / 2} \frac{1}{\cos x} d x=\int_{0}^{\pi / 2} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\pi / 2}=\ln |\infty+\infty|-0=\infty$.
7. The region enclosed by the given curves is rotated about the x-axis. Find the volume of the resulting solid using cross-sections.
(a) $y=|x|, y=2-x^{2}$

Solution: the two curves intersect at $x= \pm 1$ and the curve $y=2-x^{2}$ provides the outer radii. So the volume equals $\int_{-1}^{1} \pi\left[\left(2-x^{2}\right)^{2}-|x|^{2}\right] d x$. Now write $\left(2-x^{2}\right)^{2}=4-4 x^{2}+x^{4}$ and $|x|^{2}=x^{2}$ to get the volume $=\frac{76}{15} \pi$.
(b) $y=\cos x, y=\sin x, 0 \leq x \leq \pi / 4$

Solution: $y=\cos x$ provides the outer radii. So the volume equals $\int_{0}^{\pi / 4} \pi\left[(\cos x)^{2}-\right.$ $\left.(\sin x)^{2}\right] d x=\pi \int_{0}^{\pi / 4} \cos (2 x) d x=\frac{\pi}{2}$.
8. Use the method of cylindrical shells to find the volume generated by rotating about the y-axis the region bounded by the given curves.
(a) $y=|x|, y=2-x^{2}$

Solution: the two curves intersect at $x= \pm 1$ and $y=2-x^{2}$ is the upper curve. By symmetry we can drop the portion of the region with negative x-component. So the volume equals $\int_{0}^{1} 2 \pi x\left[\left(2-x^{2}\right)-x\right] d x=\frac{5}{6} \pi$.
(b) $y=\sqrt{x^{2}+1}, y=0, x=0, x=1$

Solution: the volume equals $\int_{0}^{1} 2 \pi x \sqrt{x^{2}+1} d x=\frac{2 \pi}{3}\left(2^{3 / 2}-1\right)$.
9. Find the arc length of the curve.
(a) $\ln (\cos x), 0 \leq x \leq \pi / 4$

Solution: since $[\ln (\cos x)]^{\prime}=-\tan x$, the arc length equals $\int_{0}^{\pi / 4} \sqrt{1+\tan ^{2} x} d x=$ $\int_{0}^{\pi / 4} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\pi / 4}=\ln (\sqrt{2}+1)$.
(b) $y=\frac{x^{2}}{4}-\frac{\ln x}{2}, 1 \leq x \leq 2$

Solution: note that $1+[d y / d x]^{2}=1+\left(\frac{x}{2}-\frac{1}{2 x}\right)^{2}=\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}$. Therefore the arc length equals $\int_{1}^{2} \sqrt{1+[d y / d x]^{2}} d x=\int_{1}^{2}\left(\frac{x}{2}+\frac{1}{2 x}\right) d x=\left[\frac{x^{2}}{4}+\frac{\ln x}{2}\right]_{1}^{2}=\frac{3}{4}+\frac{\ln 2}{2}$.
10. Find the area of the surface obtained by rotating the curve about the specified axis.
(a) $y=\sqrt{1+e^{x}}, 0 \leq x \leq 1$; about the x-axis

Solution: the surface area equals $\int_{0}^{1} 2 \pi y d s=\int_{0}^{1} 2 \pi \sqrt{1+e^{x}} \sqrt{1}+\left(\frac{e^{x}}{2 \sqrt{1+e^{x}}}\right)^{2} d x$. Combining the square roots the integrand becomes $2 \pi \sqrt{\left(1+e^{x}\right)+\frac{e^{2 x}}{4}}=\pi \sqrt{4+4 e^{x}+e^{2 x}}=$ $\pi \sqrt{\left(2+e^{x}\right)^{2}}=\pi\left(2+e^{x}\right)$. So the area equals $\int_{0}^{1} \pi\left(2+e^{x}\right) d x=(1+e) \pi$.
(b) $y=\frac{x^{2}}{4}-\frac{\ln x}{2}, 1 \leq x \leq 2$; about the y-axis

Solution: the surface area equals $\int_{1}^{2} 2 \pi x d s=\int_{1}^{2} 2 \pi x \sqrt{1+[d y / d x]^{2}} d x$. By the computation in $\mathbf{9}(\mathrm{b})$, this equals $\int_{1}^{2} 2 \pi x\left(\frac{x}{2}+\frac{1}{2 x}\right) d x=\frac{10}{3} \pi$.

