11.1\#2 Let $P=\left\{R_{i j}\right\}$ be any partition of the rectangle $R=[a, b] \times[c, d]$. Since $f(x, y) \equiv k$, we have

$$
M_{i j}=\sup _{R_{i j}} f=k, \quad m_{i j}=\inf _{R_{i j}} f=k
$$

for any i and j. Therefore,

$$
\begin{aligned}
& U(P, f)=\sum_{i j} M_{i j}\left|R_{i j}\right|=k \sum_{i j}\left|R_{i j}\right|=k(b-a)(d-c), \\
& L(P, f)=\sum_{i j} m_{i j}\left|R_{i j}\right|=k \sum_{i j}\left|R_{i j}\right|=k(b-a)(d-c) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \iint_{R} f=\inf _{P} U(P, f)=k(b-a)(d-c), \\
& \iint_{R} f=\sup _{P} L(P, f)=k(b-a)(d-c) .
\end{aligned}
$$

 $\iint_{R} f=k(b-a)(d-c)$.
11.1\#6 Let $P=\left\{R_{i j}\right\}$ be any partition of the rectangle $R=[0,1] \times[0,1]$. For any i and j, since $R_{i j}$ contains a point (x, y) with $x \in \mathbb{Q}$, we have

$$
M_{i j}=\sup _{R_{i j}} f=1 ;
$$

similarly, since $R_{i j}$ contains a point (x, y) with $x \notin \mathbb{Q}$, we have

$$
m_{i j}=\inf _{R_{i j}} f=0 .
$$

From this we find that

$$
\begin{gathered}
U(P, f)=\sum_{i j} M_{i j}\left|R_{i j}\right|=\sum_{i j}\left|R_{i j}\right|=1, \\
L(P, f)=\sum_{i j} m_{i j}\left|R_{i j}\right|=0,
\end{gathered}
$$

and therefore

$$
\begin{aligned}
& \iint_{R} f=\inf _{P} U(P, f)=1 \\
& \underline{\iint_{R}} f=\sup _{P} L(P, f)=0 .
\end{aligned}
$$

11.2\#5 (a) Let's consider three different cases.

Case 1: $y<1$. In this case we have

$$
\bar{\int}_{0}^{1} f(x, y) d x=2<\underline{\int}_{0}^{1} f(x, y) d x=2 y
$$

Therefore $\int_{0}^{1} f(x, y) d x$ does not exist.
Case 2: $y=1$. In this case we have

$$
f(x, y)=2, \forall x \in[0,1] .
$$

So $\int_{0}^{1} f(x, y) d x=2$ (exists).
Case 3: $y>1$. In this case we have

$$
\bar{\int}_{0}^{1} f(x, y) d x=2 y>\underline{\int}_{0}^{1} f(x, y) d x=2
$$

Therefore $\int_{0}^{1} f(x, y) d x$ does not exist.
Since $\int_{0}^{1} f(x, y) d x$ exists only when $y=1$, the iterated integral $\int_{0}^{2}\left[\int_{0}^{1} f(x, y) d x\right] d y$ DNE.
(b) Let's consider two different cases.

Case 1: $x \notin \mathbb{Q}$. In this case we have

$$
f(x, y)=2, \quad \forall y \in[0,2] .
$$

So $\int_{0}^{2} f(x, y) d y=4$ (exists).
Case 2: $x \in \mathbb{Q}$. In this case we have

$$
f(x, y)=2 y, \forall y \in[0,2] .
$$

So $\int_{0}^{2} f(x, y) d y=\int_{0}^{2} 2 y d y=4$ (exists).
Therefore the iterated integral $\int_{0}^{1}\left[\int_{0}^{2} f(x, y) d y\right] d x=\int_{0}^{1} 4 d x=4$ (exists).
(c) We show that f is not Riemann integrable on $R=[0,1] \times[0,2]$. If f were Riemann integrable, then by Fubini's theorem, we would have

$$
\int_{0}^{1}\left[\int_{0}^{2} f(x, y) d y\right] d x=\int_{0}^{2}\left[\int_{0}^{1} f(x, y) d x\right] d y
$$

By the computation above, this leads to

$$
4=\int_{0}^{2} \max (2 y, 2) d y
$$

Since

$$
\int_{0}^{2} \max (2 y, 2) d y=\int_{0}^{1} 2 d y+\int_{1}^{2} 2 y d y=5 \neq 4
$$

we obtain a contradiction.
11.2\#7(a) Since $f(x)$ and $g(y)$ are both Riemann integrable, it can be shown that $F(x, y):=$ $f(x) g(y)$ is Riemann integrable on $R=[a, b] \times[c, d]$ (show this). By Fubini's theorem, we then have (note that the inner integral always exists)

$$
\begin{aligned}
\iint_{R} f(x) g(y) d x d y & =\int_{c}^{d}\left[\int_{a}^{b} f(x) g(y) d x\right] d y \\
& =\int_{c}^{d} g(y)\left[\int_{a}^{b} f(x) d x\right] d y \\
& =\left[\int_{a}^{b} f(x) d x\right] \int_{c}^{d} g(y) d y \\
& =\left[\int_{a}^{b} f(x) d x\right]\left[\int_{c}^{d} g(y) d y\right] .
\end{aligned}
$$

This proves the identity.

