7.1\#1(e) Since

$$
\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \frac{k}{2 k+1}=\frac{1}{2} \neq 0
$$

by the Divergence Test, the series

$$
\sum_{k=1}^{\infty} \frac{k}{2 k+1}
$$

diverges.
7.1\#1(f) Notice that,

$$
a_{k}=\frac{2}{k^{2}+k}=\frac{1}{k}-\frac{1}{k+2} .
$$

Therefore,

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{2}{k^{2}+k} & =\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right) \\
& =\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots \\
& =1+\frac{1}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

7.1\#4(a) The statement is false. Consider

$$
a_{k}=\frac{1}{k}, \quad b_{k}=-\frac{1}{k} .
$$

Then both $\sum a_{k}$ and $\sum b_{k}$ diverge, but

$$
\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{\infty} 0
$$

converges.
7.1\#4(c) The statement is true. Assume otherwise that

$$
\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)
$$

converges. Then

$$
\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty}\left[\left(a_{k}+b_{k}\right)-a_{k}\right]=\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)-\sum_{k=1}^{\infty} a_{k}
$$

converges, since $\sum a_{k}$ converges. But this contradicts the assumption that $\sum b_{k}$ diverges. Therefore $\sum\left(a_{k}+b_{k}\right)$ must be divergent.
7.1\#17 We show by definition that

$$
\lim _{n \rightarrow \infty} S_{n}=0
$$

Observe that

$$
S_{2 k}=(1-1)+\left(\frac{1}{2}-\frac{1}{2}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k}\right)=0 .
$$

Therefore,

$$
\lim _{k \rightarrow \infty} S_{2 k}=0
$$

On the other hand,

$$
S_{2 k+1}=(1-1)+\left(\frac{1}{2}-\frac{1}{2}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k}\right)+\frac{1}{k+1}=\frac{1}{k+1}
$$

So we also have

$$
\lim _{k \rightarrow \infty} S_{2 k+1}=0
$$

Combining these we conclude

$$
\lim _{n \rightarrow \infty} S_{n}=0,
$$

as desired.
7.2\#1(k) Notice that

$$
\ln k \geq 1, \quad \forall k \geq 3
$$

Therefore,

$$
\frac{\ln k}{k} \geq \frac{1}{k}, \forall k \geq 3
$$

Since

$$
\sum_{k=3}^{\infty} \frac{1}{k}
$$

diverges. By the Comparison Test, we have that

$$
\sum_{k=3}^{\infty} \frac{\ln k}{k}
$$

diverges.
7.2\#1(s) Consider

$$
b_{k}=\frac{\sqrt{k}}{\sqrt{k^{3}}}=\frac{1}{k} .
$$

Then

$$
\lim _{k \rightarrow \infty} \frac{b_{k}}{a_{k}}=\frac{\sqrt{k^{3}}+1}{\sqrt{k^{3}}}=1<\infty .
$$

By the Limit Comparison Test, since $\sum b_{k}$ diverges, we have

$$
\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{\sqrt{k}}{\sqrt{k^{3}}+1}
$$

diverges.
7.2\#5 Since

$$
\sum_{k=1}^{\infty} a_{k}
$$

converges, we must have

$$
\lim _{k \rightarrow \infty} a_{k}=0 .
$$

This implies that $\left\{a_{k}\right\}$ is bounded, i.e. there exists $M>0$ such that

$$
\left|a_{k}\right|=a_{k} \leq M, \forall k \geq 1
$$

From this we deduce that

$$
0 \leq a_{k}^{2}=a_{k} a_{k} \leq M a_{k}, \forall k \geq 1
$$

By the Comparison Test, since $\sum M a_{k}$ converges,

$$
\sum_{k=1}^{\infty} a_{k}^{2}
$$

converges as well. This completes the proof.

