7.1#1(e) Since
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by the Divergence Test, the series
diverges.
7.1#1(f) Notice that,
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7.1#4(a) The statement is false. Consider
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Then both > a; and ) by diverge, but

Z(ak + by) = Z 0
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converges.

7.1#4(c) The statement is true. Assume otherwise that
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converges. Then



converges, since »  ay converges. But this contradicts the assumption that > by diverges.
Therefore > (ay + bx) must be divergent.

7.1#17 We show by definition that

lim S, = 0.
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Observe that

Therefore,

On the other hand,
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So we also have
lim S2k+1 = 0.
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Combining these we conclude
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as desired.
7.2#1(k) Notice that
Ink >1, Vk > 3.
Therefore,
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diverges. By the Comparison Test, we have that
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diverges.

7.2#1(s) Consider
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By the Limit Comparison Test, since ) by, diverges, we have

diverges.

7.2#5 Since

converges, we must have

lim a; = 0.
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This implies that {a} is bounded, i.e. there exists M > 0 such that

From this we deduce that
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OSaz:akak < May, Vk > 1.

By the Comparison Test, since > May converges,
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converges as well. This completes the proof.



