$7.3 \# 7(a)$ It can be shown that

$$
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\frac{2}{3}<1
$$

Therefore, by the Root Test, the series converges.
$7.3 \# 7(b)$ It can be shown that

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\frac{1}{4}<1 .
$$

Therefore, by the Ratio Test, the series converges.
7.4\#2(d) Note that

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \frac{k}{4 k^{2}-3}
$$

is an alternating series. To show that it converges, by the Alternating Series Test, we need to show

$$
\lim _{k \rightarrow \infty} \frac{k}{4 k^{2}-3}=0
$$

(which is obvious) and that

$$
\frac{k+1}{4(k+1)^{2}-3} \leq \frac{k}{4 k^{2}-3} .
$$

The last inequality is equivalent to

$$
(k+1)\left(4 k^{2}-3\right) \leq k\left(4(k+1)^{2}-3\right)
$$

which is

$$
4 k^{3}+4 k^{2}-3 k-3 \leq 4 k^{3}+8 k^{2}+k .
$$

But this is clearly true since $k \geq 1$.
7.4\#4 For any fixed n, by the triangle inequality, we have

$$
\left|\sum_{k=1}^{n} a_{k}\right| \leq \sum_{k=1}^{n}\left|a_{k}\right| .
$$

Taking n to infinity, we obtain

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} a_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right|,
$$

or

$$
\left|\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right| .
$$

By the definition of the value of series, this means

$$
\left|\sum_{k=1}^{\infty} a_{k}\right| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|,
$$

as desired.

