7.3#7(a) It can be shown that
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Therefore, by the Root Test, the series converges.

7.3#7(b) It can be shown that
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Therefore, by the Ratio Test, the series converges.

7.4#2(d) Note that
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is an alternating series. To show that it converges, by the Alternating Series Test, we need
to show
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(which is obvious) and that
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The last inequality is equivalent to
(k+1)(4k* = 3) < k (4(k + 1)* = 3)

which is
A3 + 4k* — 3k — 3 < 4k® + 8k® + k.
But this is clearly true since k£ > 1.

7.4#£4 For any fixed n, by the triangle inequality, we have
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Taking n to infinity, we obtain
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or
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By the definition of the value of series, this means
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as desired.



