
8.1#1(f) Since ∣∣∣∣sin(nx)√
n

∣∣∣∣ ≤ 1√
n
→ 0,

we have

f(x) = lim
n→∞

fn(x) = lim
n→∞

sin(nx)√
n

= 0

for all x.

8.1#1(i) For x ∈ [0, 1), we have

0 ≤ fn(x) =
xn

1 + xn
≤ xn → 0, n→∞.

Therefore
f(x) = lim

n→∞
fn(x) = 0, ∀x ∈ [0, 1)

For x = 1, we have

fn(1) =
1

1 + 1
=

1

2
, ∀n.

Therefore

f(1) = lim
n→∞

fn(1) =
1

2
.

For x ∈ (1,∞), we have

fn(x) =
xn

1 + xn
=

1

x−n + 1
→ 1, n→∞.

Therefore
f(x) = lim

n→∞
fn(x) = 1, ∀x ∈ (1,∞)

8.2#2 Given ε > 0, since fn converges uniformly to f on D, there exists n∗1 such that

|fn(x)− f(x)| < ε

2
, ∀x ∈ D, n ≥ n∗1.

Similarly, since gn converges uniformly to g on D, there exists n∗2 such that

|gn(x)− g(x)| < ε

2
, ∀x ∈ D, n ≥ n∗2.

Let n∗ = max(n∗1, n
∗
2). Then for all n ≥ n∗, x ∈ D, we have

|(fn(x) + gn(x))− (f(x) + g(x))| = |(fn(x)− f(x)) + (gn(x)− g(x))|
≤ |fn(x)− f(x)|+ |gn(x)− g(x)|

<
ε

2
+

ε

2
= ε.

By definition, this shows fn + gn converges uniformly to f + g on D.



8.2#3(a) Let ε = 1. Since fn converges uniformly to f on D, there exists n∗ such that

|fn(x)− f(x)| < ε = 1, ∀x ∈ D, n ≥ n∗.

In particular, taking n = n∗, we have

|fn∗(x)− f(x)| < 1, ∀x ∈ D.

Since fn∗ is bounded, there exists M > 0 such that

|fn∗(x)| ≤M, ∀x ∈ D.

Therefore, for all x ∈ D, we have

|f(x)| = |(f(x)− fn∗(x)) + fn∗(x)|
≤ |f(x)− fn∗(x)|+ |fn∗(x)|
≤ 1 + M.

This shows f is bounded on D.

8.2#6(a) (⇒) Given ε > 0, since fn converges uniformly to f on D, there exists n∗ such
that

|fn(x)− f(x)| < ε

2
, ∀x ∈ D, n ≥ n∗.

Taking sup over x ∈ D, we obtain that, for all n ≥ n∗,

sup
x∈D
|fn(x)− f(x)| ≤ ε

2
< ε.

That is,
Mn < ε, ∀n ≥ n∗.

By definition, this shows
lim
n→∞

Mn = 0.

(⇐) Given ε > 0, since
lim
n→∞

Mn = 0.

there exists n∗ such that
Mn < ε, ∀n ≥ n∗.

In particular, for all n ≥ n∗, x ∈ D, we have

|fn(x)− f(x)| ≤ sup
x∈D
|fn(x)− f(x)| = Mn < ε.

By definition, this shows fn converges uniformly to f on D.


