
8.3#1 Note that, for x ≥ 2, we have

xn

1 + x2n
≤ xn

x2n
=

1

xn
≤ 1

2n
→ 0.

Therefore

fn(x) =
xn

1 + x2n

converges uniformly to 0 on [2, 5]. Clearly, each fn is continuous on [2, 5]. So, by Theorem
8.3.3, we have

lim
n→∞

∫ 5

2

fn(x) dx =

∫ 5

2

(
lim
n→∞

fn(x)
)
dx = 0.

8.3#6 Since fn is continuous and converges uniformly to f on D, by Theorem 8.3.1, f is
continuous on D. In particular, for any given ε > 0, there exists n∗1 such that

|f(xn)− f(c)| < ε

2
, ∀n ≥ n∗1.

On the other hand, by uniform convergence, there exists n∗2 such that

|fn(x)− f(x)| < ε

2
, ∀n ≥ n∗2, ∀x ∈ D.

In particular, letting x = xn, this implies

|fn(xn)− f(xn)| < ε

2
, ∀n ≥ n∗2.

Therefore, for all n ≥ n∗ = max(n∗1, n
∗
2), we have

|fn(xn)− f(c)| = |fn(xn)− f(xn) + f(xn)− f(c)|
≤ |fn(xn)− f(xn)|+ |f(xn)− f(c)|

<
ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, this shows

lim
n→∞

fn(xn) = f(c),

as desired.

8.4#14 Let

Fn =
n∑

k=1

fk.

Then Fn is continuously differentiable and converges pointwise to F =
∑∞

k=1 fk. Moreover,
by the assumption we have that F ′n converges uniformly to

lim
n→∞

F ′n = lim
n→∞

n∑
k=1

f ′k =
∞∑
k=1

f ′k.



By Theorem 8.3.5, this implies that F =
∑∞

k=1 fk is differentiable and moreover

F ′ =
∞∑
k=1

f ′k.


