9.4\#3(a)

$$
\binom{x(t)}{y(t)}=\binom{-1}{3}+\frac{t}{4}\left[\binom{2}{-5}-\binom{-1}{3}\right]=\binom{\frac{3}{4} t-1}{-2 t+3} .
$$

9.4\#3(b) For instance:

$$
\binom{x(t)}{y(t)}=\binom{-2 \sin (t)}{2 \cos (t)} .
$$

9.6\#9 Suppose

$$
\vec{r}(t)=\left(\begin{array}{l}
f(t) \\
g(t) \\
h(t)
\end{array}\right)
$$

Since $\vec{r}(t)$ is continuous, the functions f, g, h are all continuous. In particular, the nonnegative function

$$
[f(t)]^{2}+[g(t)]^{2}+[h(t)]^{2}
$$

is continuous. Writing

$$
\|\vec{r}(t)\|=\sqrt{[f(t)]^{2}+[g(t)]^{2}+[h(t)]^{2}}
$$

we see that, as the square root of a nonnegative continuous function, $\|\vec{r}(t)\|$ is also continuous.
However, the continuity of $\|\vec{r}(t)\|$ does not in general imply the continuity of $\vec{r}(t)$. For instance, if we let

$$
\vec{r}(t)=\left(\begin{array}{c}
f(t) \\
0 \\
0
\end{array}\right), t \in \mathbb{R}
$$

where

$$
f(t)= \begin{cases}-1 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

Then

$$
\|\vec{r}(t)\|=1, \quad \forall t \in \mathbb{R}
$$

and therefore $\|\vec{r}(t)\|$ is continuous on \mathbb{R}. However the vector-valued function $\vec{r}(t)$ is not continuous on \mathbb{R} as $f(t)$ is discontinuous at $t=0$.
9.6\#11(c) Suppose

$$
\vec{u}(t)=\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right)
$$

Then

$$
\begin{aligned}
\frac{d}{d t}[k(t) \vec{u}(t)]=\frac{d}{d t}\left(\begin{array}{c}
k(t) f(t) \\
k(t) g(t) \\
k(t) h(t)
\end{array}\right) & =\left(\begin{array}{c}
k^{\prime}(t) f(t)+k(t) f^{\prime}(t) \\
k^{\prime}(t) g(t)+k(t) g^{\prime}(t) \\
k^{\prime}(t) h(t)+k(t) h^{\prime}(t)
\end{array}\right) \\
& =\left(\begin{array}{c}
k^{\prime}(t) f(t) \\
k^{\prime}(t) g(t) \\
k^{\prime}(t) h(t)
\end{array}\right)+\left(\begin{array}{c}
k(t) f^{\prime}(t) \\
k(t) g^{\prime}(t) \\
k(t) h^{\prime}(t)
\end{array}\right) \\
& =k^{\prime}(t) \vec{u}(t)+k(t) \vec{u}^{\prime}(t) .
\end{aligned}
$$

This proves the identity.
9.6\#11(d) Suppose

$$
\vec{u}(t)=\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\frac{d}{d t} \vec{u}(k(t))=\frac{d}{d t}\left(\begin{array}{l}
f(k(t)) \\
g(k(t)) \\
h(k(t))
\end{array}\right) & =\left(\begin{array}{c}
f(k(t)) k^{\prime}(t) \\
g(k(t)) k^{\prime}(t) \\
h(k(t)) k^{\prime}(t)
\end{array}\right) \\
& =k^{\prime}(t)\left(\begin{array}{l}
f(k(t)) \\
g(k(t)) \\
h(k(t))
\end{array}\right) \\
& =k^{\prime}(t) \vec{u}(k(t)) .
\end{aligned}
$$

This proves the identity.

