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[More precisely, in the above argument you need to show that

Sn = 1 +
1

2
− 1

n + 1
− 1

n + 2
, n ≥ 2

and then take the limit n→∞.]

7.1#4(a) The statement is false. Consider

ak =
1

k
, bk = −1

k
.

Then both
∑

ak and
∑

bk diverge, but
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converges.

7.1#4(c) The statement is true. Assume otherwise that

∞∑
k=1

(ak + bk)



converges. Then
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converges, since
∑
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∑

bk diverges.
Therefore

∑
(ak + bk) must be divergent.

7.1#17 We show by definition that

lim
n→∞

Sn = 0.

Observe that
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Therefore,
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On the other hand,
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So we also have
lim
k→∞

S2k+1 = 0.

Combining these we conclude
lim
n→∞

Sn = 0,

as desired.


