7.4\#2(d) Note that

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \frac{k}{4 k^{2}-3}
$$

is an alternating series. To show that it converges, by the Alternating Series Test, we need to show

$$
\lim _{k \rightarrow \infty} \frac{k}{4 k^{2}-3}=0
$$

(which is obvious) and that

$$
\frac{k+1}{4(k+1)^{2}-3} \leq \frac{k}{4 k^{2}-3} .
$$

The last inequality is equivalent to

$$
(k+1)\left(4 k^{2}-3\right) \leq k\left(4(k+1)^{2}-3\right)
$$

which is

$$
4 k^{3}+4 k^{2}-3 k-3 \leq 4 k^{3}+8 k^{2}+k
$$

or,

$$
-3 \leq 4 k^{2}+4 k
$$

But this is clearly true since $k \geq 1$.
7.4\#4 For any fixed n, by the triangle inequality, we have

$$
\left|\sum_{k=1}^{n} a_{k}\right| \leq \sum_{k=1}^{n}\left|a_{k}\right| .
$$

Taking n to infinity, we obtain

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} a_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right|,
$$

or

$$
\left|\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{k}\right| .
$$

By the definition of the value of series, this means

$$
\left|\sum_{k=1}^{\infty} a_{k}\right| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|,
$$

which is the desired inequality.
8.1\#1(f) Since

$$
\left|\frac{\sin (n x)}{\sqrt{n}}\right| \leq \frac{1}{\sqrt{n}} \rightarrow 0
$$

we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{\sin (n x)}{\sqrt{n}}=0
$$

for all x.
8.1\#1(i) For $x \in[0,1)$, we have

$$
0 \leq f_{n}(x)=\frac{x^{n}}{1+x^{n}} \leq x^{n} \rightarrow 0, n \rightarrow \infty
$$

Therefore

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0, \forall x \in[0,1)
$$

For $x=1$, we have

$$
f_{n}(1)=\frac{1}{1+1}=\frac{1}{2}, \forall n
$$

Therefore

$$
f(1)=\lim _{n \rightarrow \infty} f_{n}(1)=\frac{1}{2}
$$

For $x \in(1, \infty)$, we have

$$
f_{n}(x)=\frac{x^{n}}{1+x^{n}}=\frac{1}{x^{-n}+1} \rightarrow 1, n \rightarrow \infty
$$

Therefore

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=1, \forall x \in(1, \infty) .
$$

