
7.4#2(d) Note that
∞∑
k=1

(−1)k−1
k

4k2 − 3

is an alternating series. To show that it converges, by the Alternating Series Test, we need
to show

lim
k→∞

k

4k2 − 3
= 0

(which is obvious) and that
k + 1

4(k + 1)2 − 3
≤ k

4k2 − 3
.

The last inequality is equivalent to

(k + 1)(4k2 − 3) ≤ k
(
4(k + 1)2 − 3

)
which is

4k3 + 4k2 − 3k − 3 ≤ 4k3 + 8k2 + k,

or,
−3 ≤ 4k2 + 4k.

But this is clearly true since k ≥ 1.

7.4#4 For any fixed n, by the triangle inequality, we have∣∣∣ n∑
k=1

ak

∣∣∣ ≤ n∑
k=1

|ak|.

Taking n to infinity, we obtain

lim
n→∞

∣∣∣ n∑
k=1

ak

∣∣∣ ≤ lim
n→∞

n∑
k=1

|ak|,

or ∣∣∣ lim
n→∞

n∑
k=1

ak

∣∣∣ ≤ lim
n→∞

n∑
k=1

|ak|.

By the definition of the value of series, this means∣∣∣ ∞∑
k=1

ak

∣∣∣ ≤ ∞∑
k=1

|ak|,

which is the desired inequality.

8.1#1(f) Since ∣∣∣∣sin(nx)√
n

∣∣∣∣ ≤ 1√
n
→ 0,



we have

f(x) = lim
n→∞

fn(x) = lim
n→∞

sin(nx)√
n

= 0

for all x.

8.1#1(i) For x ∈ [0, 1), we have

0 ≤ fn(x) =
xn

1 + xn
≤ xn → 0, n→∞.

Therefore
f(x) = lim

n→∞
fn(x) = 0, ∀x ∈ [0, 1)

For x = 1, we have

fn(1) =
1

1 + 1
=

1

2
, ∀n.

Therefore

f(1) = lim
n→∞

fn(1) =
1

2
.

For x ∈ (1,∞), we have

fn(x) =
xn

1 + xn
=

1

x−n + 1
→ 1, n→∞.

Therefore
f(x) = lim

n→∞
fn(x) = 1, ∀x ∈ (1,∞).


