8.2\#2 Given $\varepsilon>0$, since f_{n} converges uniformly to f on D, there exists n_{1}^{*} such that

$$
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{2}, \forall x \in D, n \geq n_{1}^{*}
$$

Similarly, since g_{n} converges uniformly to g on D, there exists n_{2}^{*} such that

$$
\left|g_{n}(x)-g(x)\right|<\frac{\varepsilon}{2}, \forall x \in D, n \geq n_{2}^{*}
$$

Let $n^{*}=\max \left(n_{1}^{*}, n_{2}^{*}\right)$. Then for all $n \geq n^{*}, x \in D$, we have

$$
\begin{aligned}
\left|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x))\right| & =\left|\left(f_{n}(x)-f(x)\right)+\left(g_{n}(x)-g(x)\right)\right| \\
& \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

By definition, this shows $f_{n}+g_{n}$ converges uniformly to $f+g$ on D.
8.2\#3(a) Let $\varepsilon=1$. Since f_{n} converges uniformly to f on D, there exists n^{*} such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon=1, \forall x \in D, n \geq n^{*}
$$

In particular, taking $n=n^{*}$, we have

$$
\left|f_{n^{*}}(x)-f(x)\right|<1, \quad \forall x \in D
$$

Since $f_{n^{*}}$ is bounded, there exists $M>0$ such that

$$
\left|f_{n^{*}}(x)\right| \leq M, \forall x \in D
$$

Therefore, for all $x \in D$, we have

$$
\begin{aligned}
|f(x)| & =\left|\left(f(x)-f_{n^{*}}(x)\right)+f_{n^{*}}(x)\right| \\
& \leq\left|f(x)-f_{n^{*}}(x)\right|+\left|f_{n^{*}}(x)\right| \\
& \leq 1+M .
\end{aligned}
$$

This shows f is bounded on D.
8.2\#6(a) (\Rightarrow) Given $\varepsilon>0$, since f_{n} converges uniformly to f on D, there exists n^{*} such that

$$
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{2}, \forall x \in D, n \geq n^{*}
$$

Taking sup over $x \in D$, we obtain that, for all $n \geq n^{*}$,

$$
\sup _{x \in D}\left|f_{n}(x)-f(x)\right| \leq \frac{\varepsilon}{2}<\varepsilon .
$$

That is,

$$
M_{n}<\varepsilon, \forall n \geq n^{*} .
$$

By definition, this shows

$$
\lim _{n \rightarrow \infty} M_{n}=0
$$

(\Leftarrow) Given $\varepsilon>0$, since

$$
\lim _{n \rightarrow \infty} M_{n}=0
$$

there exists n^{*} such that

$$
M_{n}<\varepsilon, \forall n \geq n^{*}
$$

In particular, for all $n \geq n^{*}, x \in D$, we have

$$
\left|f_{n}(x)-f(x)\right| \leq \sup _{x \in D}\left|f_{n}(x)-f(x)\right|=M_{n}<\varepsilon
$$

By definition, this shows f_{n} converges uniformly to f on D.
8.3\#1 Note that, for $x \geq 2$, we have

$$
\frac{x^{n}}{1+x^{2 n}} \leq \frac{x^{n}}{x^{2 n}}=\frac{1}{x^{n}} \leq \frac{1}{2^{n}} \rightarrow 0 .
$$

Therefore

$$
f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}
$$

converges uniformly to 0 on $[2,5]$. Clearly, each f_{n} is continuous on [2,5]. So, by Theorem 8.3.3, we have

$$
\lim _{n \rightarrow \infty} \int_{2}^{5} f_{n}(x) d x=\int_{2}^{5}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=0
$$

8.3\#6 Since f_{n} is continuous and converges uniformly to f on D, by Theorem 8.3.1, f is continuous on D. In particular, for any given $\varepsilon>0$, there exists n_{1}^{*} such that

$$
\left|f\left(x_{n}\right)-f(c)\right|<\frac{\varepsilon}{2}, \forall n \geq n_{1}^{*}
$$

On the other hand, by uniform convergence, there exists n_{2}^{*} such that

$$
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{2}, \forall n \geq n_{2}^{*}, \forall x \in D
$$

In particular, letting $x=x_{n}$, this implies

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|<\frac{\varepsilon}{2}, \forall n \geq n_{2}^{*}
$$

Therefore, for all $n \geq n^{*}=\max \left(n_{1}^{*}, n_{2}^{*}\right)$, we have

$$
\begin{aligned}
\left|f_{n}\left(x_{n}\right)-f(c)\right| & =\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)+f\left(x_{n}\right)-f(c)\right| \\
& \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(c)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, this shows

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(c)
$$

as desired.

