
8.2#2 Given ε > 0, since fn converges uniformly to f on D, there exists n∗1 such that

|fn(x)− f(x)| < ε

2
, ∀x ∈ D, n ≥ n∗1.

Similarly, since gn converges uniformly to g on D, there exists n∗2 such that

|gn(x)− g(x)| < ε

2
, ∀x ∈ D, n ≥ n∗2.

Let n∗ = max(n∗1, n
∗
2). Then for all n ≥ n∗, x ∈ D, we have

|(fn(x) + gn(x))− (f(x) + g(x))| = |(fn(x)− f(x)) + (gn(x)− g(x))|
≤ |fn(x)− f(x)|+ |gn(x)− g(x)|

<
ε

2
+

ε

2
= ε.

By definition, this shows fn + gn converges uniformly to f + g on D.

8.2#3(a) Let ε = 1. Since fn converges uniformly to f on D, there exists n∗ such that

|fn(x)− f(x)| < ε = 1, ∀x ∈ D, n ≥ n∗.

In particular, taking n = n∗, we have

|fn∗(x)− f(x)| < 1, ∀x ∈ D.

Since fn∗ is bounded, there exists M > 0 such that

|fn∗(x)| ≤M, ∀x ∈ D.

Therefore, for all x ∈ D, we have

|f(x)| = |(f(x)− fn∗(x)) + fn∗(x)|
≤ |f(x)− fn∗(x)|+ |fn∗(x)|
≤ 1 + M.

This shows f is bounded on D.

8.2#6(a) (⇒) Given ε > 0, since fn converges uniformly to f on D, there exists n∗ such
that

|fn(x)− f(x)| < ε

2
, ∀x ∈ D, n ≥ n∗.

Taking sup over x ∈ D, we obtain that, for all n ≥ n∗,

sup
x∈D
|fn(x)− f(x)| ≤ ε

2
< ε.

That is,
Mn < ε, ∀n ≥ n∗.



By definition, this shows
lim
n→∞

Mn = 0.

(⇐) Given ε > 0, since
lim
n→∞

Mn = 0.

there exists n∗ such that
Mn < ε, ∀n ≥ n∗.

In particular, for all n ≥ n∗, x ∈ D, we have

|fn(x)− f(x)| ≤ sup
x∈D
|fn(x)− f(x)| = Mn < ε.

By definition, this shows fn converges uniformly to f on D.

8.3#1 Note that, for x ≥ 2, we have

xn

1 + x2n
≤ xn

x2n
=

1

xn
≤ 1

2n
→ 0.

Therefore

fn(x) =
xn

1 + x2n

converges uniformly to 0 on [2, 5]. Clearly, each fn is continuous on [2, 5]. So, by Theorem
8.3.3, we have

lim
n→∞

∫ 5

2

fn(x) dx =

∫ 5

2

(
lim
n→∞

fn(x)
)
dx = 0.

8.3#6 Since fn is continuous and converges uniformly to f on D, by Theorem 8.3.1, f is
continuous on D. In particular, for any given ε > 0, there exists n∗1 such that

|f(xn)− f(c)| < ε

2
, ∀n ≥ n∗1.

On the other hand, by uniform convergence, there exists n∗2 such that

|fn(x)− f(x)| < ε

2
, ∀n ≥ n∗2, ∀x ∈ D.

In particular, letting x = xn, this implies

|fn(xn)− f(xn)| < ε

2
, ∀n ≥ n∗2.

Therefore, for all n ≥ n∗ = max(n∗1, n
∗
2), we have

|fn(xn)− f(c)| = |fn(xn)− f(xn) + f(xn)− f(c)|
≤ |fn(xn)− f(xn)|+ |f(xn)− f(c)|

<
ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, this shows

lim
n→∞

fn(xn) = f(c),

as desired.


