8.6\#1(c) When $|x|<1$, we have $\left|x^{2}\right|<1$, and therefore

$$
\frac{1}{1-x^{2}}=\sum_{k=0}^{\infty}\left(x^{2}\right)^{k}=\sum_{k=0}^{\infty} x^{2 k} .
$$

So we can write, for $x \in(-1,1)$,

$$
\frac{x}{1-x^{2}}=x \cdot \sum_{k=0}^{\infty} x^{2 k}=\sum_{k=0}^{\infty} x^{2 k+1}
$$

8.6\#2(b) Substituting $u=t^{2}$ in the formula

$$
\sin (u)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} u^{2 k+1}
$$

we get

$$
\sin \left(t^{2}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!}\left(t^{2}\right)^{2 k+1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} t^{4 k+2}
$$

which holds for all $t \in \mathbb{R}$. Integrating from 0 to x, we get

$$
\int_{0}^{x} \sin \left(t^{2}\right) d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{x} t^{4 k+2} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \cdot \frac{x^{4 k+3}}{4 k+3}
$$

which holds for all $x \in \mathbb{R}$.
9.4\#3(a)

$$
\binom{x(t)}{y(t)}=\binom{-1}{3}+\frac{t}{4}\left[\binom{2}{-5}-\binom{-1}{3}\right]=\binom{\frac{3}{4} t-1}{-2 t+3} .
$$

9.4\#3(b) For instance:

$$
\binom{x(t)}{y(t)}=\binom{-2 \sin (t)}{2 \cos (t)}
$$

