9.6\#9 Suppose

$$
\vec{r}(t)=\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right)
$$

Since $\vec{r}(t)$ is continuous, the functions f, g, h are all continuous. In particular, the nonnegative function

$$
[f(t)]^{2}+[g(t)]^{2}+[h(t)]^{2}
$$

is continuous. Writing

$$
\|\vec{r}(t)\|=\sqrt{[f(t)]^{2}+[g(t)]^{2}+[h(t)]^{2}}
$$

we see that, as the square root of a nonnegative continuous function, $\|\vec{r}(t)\|$ is also continuous.
However, the continuity of $\|\vec{r}(t)\|$ does not in general imply the continuity of $\vec{r}(t)$. For instance, if we let

$$
\vec{r}(t)=\left(\begin{array}{c}
f(t) \\
0 \\
0
\end{array}\right), t \in \mathbb{R}
$$

where

$$
f(t)= \begin{cases}-1 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

Then

$$
\|\vec{r}(t)\|=1, \forall t \in \mathbb{R}
$$

and therefore $\|\vec{r}(t)\|$ is continuous on \mathbb{R}. However the vector-valued function $\vec{r}(t)$ is not continuous on \mathbb{R} as $f(t)$ is discontinuous at $t=0$.
9.6\#11(c) Suppose

$$
\vec{u}(t)=\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right)
$$

Then

$$
\begin{aligned}
\frac{d}{d t}[k(t) \vec{u}(t)]=\frac{d}{d t}\left(\begin{array}{c}
k(t) f(t) \\
k(t) g(t) \\
k(t) h(t)
\end{array}\right) & =\left(\begin{array}{c}
k^{\prime}(t) f(t)+k(t) f^{\prime}(t) \\
k^{\prime}(t) g(t)+k(t) g^{\prime}(t) \\
k^{\prime}(t) h(t)+k(t) h^{\prime}(t)
\end{array}\right) \\
& =\left(\begin{array}{c}
k^{\prime}(t) f(t) \\
k^{\prime}(t) g(t) \\
k^{\prime}(t) h(t)
\end{array}\right)+\left(\begin{array}{c}
k(t) f^{\prime}(t) \\
k(t) g^{\prime}(t) \\
k(t) h^{\prime}(t)
\end{array}\right) \\
& =k^{\prime}(t) \vec{u}(t)+k(t) \vec{u}^{\prime}(t)
\end{aligned}
$$

This proves the identity.
9.6\#11(d) Suppose

$$
\vec{u}(t)=\left(\begin{array}{c}
f(t) \\
g(t) \\
h(t)
\end{array}\right)
$$

Then

$$
\begin{aligned}
\frac{d}{d t} \vec{u}(k(t))=\frac{d}{d t}\left(\begin{array}{l}
f(k(t)) \\
g(k(t)) \\
h(k(t))
\end{array}\right) & =\left(\begin{array}{c}
f(k(t)) k^{\prime}(t) \\
g(k(t)) k^{\prime}(t) \\
h(k(t)) k^{\prime}(t)
\end{array}\right) \\
& =k^{\prime}(t)\left(\begin{array}{l}
f(k(t)) \\
g(k(t)) \\
h(k(t))
\end{array}\right) \\
& =k^{\prime}(t) \vec{u}(k(t)) .
\end{aligned}
$$

This proves the identity.
9.6\#29 Suppose

$$
\vec{u}(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right], \quad \vec{c}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\int_{a}^{b} \vec{c} \cdot \vec{u}(t) d t & =\int_{a}^{b}\left(c_{1} u_{1}(t)+c_{2} u_{2}(t)+c_{3} u_{3}(t)\right) d t \\
& =c_{1} \int_{a}^{b} u_{1}(t) d t+c_{2} \int_{a}^{b} u_{2}(t) d t+c_{3} \int_{a}^{b} u_{3}(t) d t \\
& =\vec{c} \cdot\left[\begin{array}{l}
\int_{a}^{b} u_{1}(t) d t \\
\int_{a}^{b} u_{2}(t) d t \\
\int_{a}^{b} u_{3}(t) d t
\end{array}\right] \\
& =\vec{c} \cdot \int_{a}^{b} \vec{u}(t) d t .
\end{aligned}
$$

This proves the identity.
9.7\#11 (a,b) Since

$$
\gamma^{\prime}(u)=\left[\begin{array}{c}
-\sin \left(u^{2}\right) 2 u \\
\cos \left(u^{2}\right) 2 u
\end{array}\right]=2 u\left[\begin{array}{c}
-\sin \left(u^{2}\right) \\
\cos \left(u^{2}\right)
\end{array}\right],
$$

we have

$$
\left\|\gamma^{\prime}(u)\right\|=2 u
$$

This shows the speed of the particle traveling along the curve is given by $2 u$. By the arclength formula, we then have

$$
s(t)=\int_{0}^{t}\left\|\gamma^{\prime}(u)\right\| d u=\int_{0}^{t} 2 u d u=t^{2} .
$$

(c) From the arclength formula $s=t^{2}$ above, we have $t=\sqrt{s}$. Substituting, we obtain

$$
\gamma(t)=\gamma(\sqrt{s})=\left[\begin{array}{l}
\cos (s) \\
\sin (s)
\end{array}\right]
$$

In particular, we have

$$
\left\|\frac{d}{d s} \gamma\right\|=1 .
$$

Therefore the speed of the particle traveling according the (arclength) parameter s is 1 .

