$\mathbf{1 0 . 4 \# 7}$ (a) For $(x, y) \neq(0,0)$, we have

$$
\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}\right|=|x| \frac{|y|}{\sqrt{x^{2}+y^{2}}} \leq|x|
$$

where the last bound is because

$$
\frac{|y|}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt{0^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}} \leq 1 .
$$

From this it is clear that

$$
\lim _{(x, y) \rightarrow(0,0)}\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}\right| \leq \lim _{(x, y) \rightarrow(0,0)}|x|=0 .
$$

Thus the continuity of f at $(0,0)$.
(b) Notice that, by the definition of f, we have for all x and y,

$$
f(x, 0)=0, \quad f(0, y)=0
$$

It follows that

$$
f_{x}(x, 0)=0, \quad f_{y}(0, y)=0
$$

In particular,

$$
f_{x}(0,0)=0, \quad f_{y}(0,0)=0 .
$$

(c) By the definition of differentiability, if f were differentiable at $(0,0)$, then

$$
f(x, y)=f_{x}(0,0) x+f_{y}(0,0) y+\varepsilon \sqrt{x^{2}+y^{2}}
$$

(note that $f(0,0)=0$), where

$$
\lim _{(x, y) \rightarrow(0,0)} \varepsilon=0 .
$$

However, according to part (b) we have

$$
f_{x}(0,0)=0, \quad f_{y}(0,0)=0 .
$$

Therefore

$$
f(x, y)=\varepsilon \sqrt{x^{2}+y^{2}},
$$

and so,

$$
\lim _{(x, y) \rightarrow(0,0)} \varepsilon=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\sqrt{x^{2}+y^{2}}}=0 .
$$

By the definition of f, this means

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=0 .
$$

However, by Exercise 10.1.4, this limit does not hold. Thus f is not differentiable at $(0,0)$.
10.4\#14 Since f and g are both differentiable at $\left(x_{0}, y_{0}\right)$, we have

$$
\begin{aligned}
& f(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\varepsilon \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}, \\
& g(x, y)=g\left(x_{0}, y_{0}\right)+g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\eta \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}},
\end{aligned}
$$

where

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \varepsilon=0, \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \eta=0 .
$$

For simplicity we will write these as

$$
\begin{aligned}
& f=f_{0}+a \Delta x+b \Delta y+\varepsilon \sqrt{\Delta x^{2}+\Delta y^{2}} \\
& g=g_{0}+c \Delta x+d \Delta y+\eta \sqrt{\Delta x^{2}+\Delta y^{2}}
\end{aligned}
$$

(a) We can write

$$
f \pm g=\left(f_{0} \pm g_{0}\right)+(a \pm c) \Delta x+(b \pm d) \Delta y+(\varepsilon \pm \eta) \sqrt{\Delta x^{2}+\Delta y^{2}}
$$

where clearly

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(\varepsilon+\eta)=0
$$

This shows $f \pm g$ are differentiable at $\left(x_{0}, y_{0}\right)$.
(b) We can write

$$
\begin{aligned}
f g & =\left(f_{0}+a \Delta x+b \Delta y+\varepsilon \sqrt{\Delta x^{2}+\Delta y^{2}}\right)\left(g_{0}+c \Delta x+d \Delta y+\eta \sqrt{\Delta x^{2}+\Delta y^{2}}\right) \\
& =f_{0} g_{0}+\left(a g_{0}+f_{0} c\right) \Delta x+\left(b g_{0}+f_{0} d\right) \Delta y+E
\end{aligned}
$$

where

$$
\begin{aligned}
E & =(a \Delta x+b \Delta y)(c \Delta x+d \Delta y) \\
& +\eta\left(f_{0}+a \Delta x+b \Delta y\right) \sqrt{\Delta x^{2}+\Delta y^{2}} \\
& +\varepsilon\left(g_{0}+c \Delta x+d \Delta y\right) \sqrt{\Delta x^{2}+\Delta y^{2}} \\
& +\varepsilon \eta\left(\Delta x^{2}+\Delta y^{2}\right) .
\end{aligned}
$$

It can be shown that

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{E}{\sqrt{\Delta x^{2}+\Delta y^{2}}}=0
$$

from which it follows that $f g$ is differentiable at $\left(x_{0}, y_{0}\right)$.

