Corrections are welcome.
2011Aug\#1. This problem is the same as 2006Aug\#2.
2011Aug\#2. (Note that we can not use Fubini's theorem here.) By Tonelli's theorem (justify applicability), if $\beta \neq 1$,

$$
\begin{aligned}
& \iint_{[0,1] \times[0,1]} \frac{1}{\left(x+y^{\alpha}\right)^{\beta}} d x d y \\
= & \int_{0}^{1}\left(\int_{0}^{1} \frac{1}{\left(x+y^{\alpha}\right)^{\beta}} d x\right) d y \\
= & \int_{0}^{1} \frac{1}{1-\beta}\left(\left(1+y^{\alpha}\right)^{1-\beta}-y^{\alpha(1-\beta)}\right) d y .
\end{aligned}
$$

Since $\left(1+y^{\alpha}\right)^{1-\beta} \approx 1$, the last line is finite if and only if

$$
\int_{0}^{1} y^{\alpha(1-\beta)} d y<\infty
$$

By the fundamental theorem of calculus, this holds if and only if

$$
\alpha(1-\beta)>-1 .
$$

If $\beta=1$, then the same computation leads to

$$
\int_{0}^{1}\left(\log \left(1+y^{\alpha}\right)-\log \left(y^{\alpha}\right)\right) d y
$$

whose finiteness is determined by

$$
\int_{0}^{1} \log \left(y^{\alpha}\right) d y
$$

which is always finite.
2011Aug\#3. (i) B is not compact in $\left(E,\|\cdot\|_{1}\right)$ by Riesz's lemma. More precisely, consider vectors

$$
e_{n}=(0, \cdots, 0,1,0, \cdots)
$$

where 1 occurs in the nth coordinate. Then clearly the sequence $\left\{e_{n}\right\}$ is contained in B. However $\left\{e_{n}\right\}$ has no convergent subsequence, as $\left\|e_{i}-e_{j}\right\|=$ 1 whenever $i \neq j$.
(ii) Denote

$$
E_{n}=\left\{x=\left(x_{1}, x_{2}, \cdots\right): x_{n+1}=x_{n+2}=\cdots=0\right\}
$$

and

$$
B_{n}=\underset{1}{B} \cap E_{n}
$$

Then B_{n} is a compact set since it is bounded and closed in the finite dimensional space E_{n}. Moreover,

$$
B \subset U\left(B_{n}, \frac{1}{n+1}\right)
$$

meaning that for every $x \in B$, there exists $x^{(n)} \in B_{n}$ such that

$$
\left\|x-x^{(n)}\right\|_{2} \leq \frac{1}{n+1}
$$

Such an $x^{(n)}$ can be taken to be the projection of x to the first n coordinates. Now one can prove that B is completely bounded using ϵ-nets of B_{n} for large enough n. Since B is clearly closed in the Banach space $\left(E,\|\cdot\|_{2}\right)$, B is compact.

2011Aug\#4. Denote by \mathcal{L} the Lebesgue σ-algebra. Then $f(x)-f(y)$ is $\mathcal{L} \times \mathcal{L}$-measurable. By Fubini or Tonelli's theorem (justify applicability),

$$
\iint_{[0,1] \times[0,1]}|f(x)-f(y)| d x d y=\int_{0}^{1}\left(\int_{0}^{1}|f(x)-f(y)| d x\right) d y<\infty
$$

Write

$$
F(y)=\int_{0}^{1}|f(x)-f(y)| d x
$$

Then $F(y)<\infty$ for a.e. $y \in[0,1]$. Fix such an y, we see that

$$
\int_{0}^{1}|f(x)-c| d x<\infty
$$

where $c=f(y)$. This implies $f \in L^{1}[0,1]$.

2011Aug\#5. First, notice that since $f_{n} \rightarrow f$ in Lebesgue measure, there exists a subsequence n_{k} such that $f_{n_{k}} \rightarrow f$ a.e. on [0.1]. By Fatou's lemma (applied to $\left|f_{n}\right|^{2}$), we see that $\|f\|_{L^{2}[0,1]} \leq 1$.

Given $\epsilon>0$, write

$$
E_{n}=\left\{x \in[0,1]:\left|f_{n}(x)-f(x)\right|>\epsilon\right\} .
$$

Then

$$
\begin{aligned}
& \left|\int_{0}^{1}\left(f_{n}(x)-f(x)\right) g(x) d x\right| \\
\leq & \left|\int_{E_{n}}\left(f_{n}(x)-f(x)\right) g(x) d x\right|+\left|\int_{E_{n}^{c}}\left(f_{n}(x)-f(x)\right) g(x) d x\right| \\
\leq & \left(\int_{E_{n}}\left|f_{n}(x)-f(x)\right|^{2} d x \mid\right)^{1 / 2}\left(\int_{E_{n}}|g(x)|^{2} d x \mid\right)^{1 / 2}+\int_{E_{n}^{c}}\left|f_{n}(x)-f(x)\right||g(x)| d x \\
\leq & \left(\left\|f_{n}\right\|_{L^{2}[0,1]}+\|f\|_{L^{2}[0,1]}\right)\left(\int_{E_{n}}|g(x)|^{2} d x \mid\right)^{1 / 2}+\epsilon \int_{E_{n}^{c}}|g(x)| d x
\end{aligned}
$$

$\leq 2\left(\int_{E_{n}}|g(x)|^{2} d x \mid\right)^{1 / 2}+\epsilon\|g\|_{L^{2}[0,1]}$.
Since $\left|E_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\left(\int_{E_{n}}|g(x)|^{2} d x \mid\right)^{1 / 2} \rightarrow 0
$$

Thus

$$
\limsup _{n \rightarrow \infty}\left|\int_{0}^{1}\left(f_{n}(x)-f(x)\right) g(x) d x\right| \leq \epsilon\|g\|_{L^{2}[0,1]} .
$$

Since $\epsilon>0$ is arbitrary, we conclude the proof.
2011Aug\#6. (i) Notice that by

$$
\cos \left(n x+t_{n}\right)=\cos (n x) \cos \left(t_{n}\right)-\sin (n x) \sin \left(t_{n}\right)
$$

we have

$$
\begin{aligned}
& \int_{E} \cos \left(n x+t_{n}\right) d x \\
= & \cos \left(t_{n}\right) \int_{0}^{2 \pi} \chi_{E}(x) \cos (n x) d x-\sin \left(t_{n}\right) \int_{0}^{2 \pi} \chi_{E}(x) \sin (n x) d x \\
\rightarrow & 0
\end{aligned}
$$

by the Riemann-Lebesgue lemma.
(ii) This is the same problem as 2010Jan\#5.

2011Aug\#7R. By the condition, we have $f_{n}(x) \rightarrow f(x)$ for all $x \in[0,1]$. In particular, for any $\epsilon>0$.

$$
[0,1]=\bigcup_{p \geq 1} \bigcap_{m, n \geq p}\left\{x \in[0,1]:\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon / 2\right\}
$$

Now set

$$
F_{p}=\bigcap_{m, n \geq p}\left\{x \in[0,1]:\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon / 2\right\}
$$

Then F_{p} is closed set by the continuity of f_{n}.
We claim that there exists p such that F_{p} contains an interval. Indeed, if this is not true then F_{p} is a nowhere dense. But

$$
[0,1]=\bigcup_{p \geq 1} F_{p}
$$

which is then a set of first category, contradicting the Baire category theorem since $[0,1]$ is complete.

Now suppose $(a, b) \subset F_{p}$ for some fixed p. Then for any $x \in(a, b)$,

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon / 2
$$

Let $m \rightarrow \infty$, we see that

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon / 2<\epsilon .
$$

This completes the proof.
2011Aug\#8R. (i) We claim that the set

$$
B_{\lambda}=\left\{\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N}):\left|x_{n}\right| \leq \lambda_{n}, \forall n\right\}
$$

is compact in $\ell^{2}(\mathbb{N})$ if and only if

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right) \in \ell^{2}(\mathbb{N}) .
$$

Suppose B_{λ} is compact, then in particular B_{λ} is bounded, i.e. there exists $C>0$ such that

$$
\|x\|_{\ell^{2}(\mathbb{N})} \leq C
$$

for all $x \in B_{\lambda}$. For integer $N \geq 1$, let

$$
\lambda^{(N)}=\left(\lambda_{1}, \cdots, \lambda_{N}, 0, \cdots\right) .
$$

Then $\lambda^{(N)} \in B_{\lambda}$ and thus

$$
\left\|\lambda^{(N)}\right\|_{\ell^{2}(\mathbb{N})} \leq C
$$

Let $N \rightarrow \infty$, we see that $\|\lambda\|_{\ell^{2}(\mathbb{N})} \leq C$.
Suppose $\lambda \in \ell^{2}(\mathbb{N})$. Let

$$
E_{N}=\left\{\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N}): x_{n}=0, \forall n>N\right\}
$$

and

$$
B_{\lambda}^{(N)}=B_{\lambda} \cap E_{N} .
$$

Each $B_{\lambda}^{(N)}$ is compact since it is closed and bounded in a finite dimensional space. Now because

$$
B_{\lambda}^{(N)} \rightarrow B_{\lambda}
$$

uniformly, we can conclude that B_{λ} is also compact using complete boundedness (B_{λ} is clearly closed in the Banach space $\ell^{2}(\mathbb{N})$).
(ii) We claim that the set

$$
B_{\mu}=\left\{\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N}): \sum_{n} \frac{\left|x_{n}\right|^{2}}{\mu_{n}^{2}} \leq 1\right\}
$$

is compact in $\ell^{2}(\mathbb{N})$ if and only if

$$
\mu=\left(\mu_{1}, \mu_{2}, \cdots\right) \in c_{0},
$$

i.e. $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Suppose $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$. Notice that $x \in B_{\mu}$ implies

$$
\sum_{n \geq N}\left|x_{n}\right|^{2} \leq \sup _{n \geq N} \mu_{n}^{2} \rightarrow 0, \text { as } N \rightarrow \infty .
$$

Thus arguing as above, one can approximate B_{μ} uniformly by finite dimensional compact sets and hence is compact (B_{μ} is clearly closed).

Suppose B_{μ} is compact, we now show that $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$. Assume for contradiction that this is not true. Then there exists $\delta>0$ and a subsequence n_{k} such that $\mu_{n_{k}}^{2} \geq \delta^{2}$. If we set

$$
x^{(k)}=\delta e_{n_{k}}
$$

where $e_{n_{k}}$ is the indicator of the n_{k} th coordinate. Then $x^{(k)} \in B_{\mu}$, yet

$$
\left\|x^{(k)}-x^{(l)}\right\|_{\ell^{2}(\mathbb{N})}=\sqrt{2} \delta
$$

This shows B_{μ} is not compact, contradiction.
2011Aug\#9R. This is essentially the same problem as 2006Aug\#7R(a), or 2008Aug\#8R.

2011Aug\#7C. Consider $D_{1}=A \backslash(1,2)$. Since D_{1} is simply connected, $u(z)$ has a harmonic conjugate $v_{1}(z)$ on D_{1}. Denote $g_{1}=u+i v_{1}$, then g_{1} is analytic on D_{1}. Let v_{2} be the harmonic conjugate of u on $D_{2}=A \backslash(-2,-1)$ which agrees with v_{1} in $A_{-}=A \cap\{z: \operatorname{Im} z<0\}$. Write $g_{2}=u+i v_{2}$. Then on $A_{+}=A \cap\{z: \operatorname{Im} z>0\}, g_{1}$ and g_{2} have the same real part, hence differ only by a purely imaginary constant, i.e. $g_{2}-g_{1}=i \beta$ on A_{+}. Now fix a branch of $(\log z)_{1}$ on D_{1}, and let

$$
f(z)=g_{1}(z)-\frac{\beta}{2 \pi}(\log z)_{1}
$$

Then clearly f is still analytic on D_{1}. On D_{2}, let $(\log z)_{2}$ be the branch which agrees with $(\log z)_{1}$ on A_{-}. Then on D_{2}, we have

$$
f(z)=g_{2}(z)-\frac{\beta}{2 \pi}(\log z)_{2}
$$

This shows that $f(z)$ is analytic on A, and we have

$$
\operatorname{Re} f(z)=u(z)-\frac{\beta}{2 \pi} \log |z|
$$

2011Aug\#8C. Let Γ be the contour consisting of $\{z:|z|=2, \operatorname{Re} z \leq 0\}$ and $\{i t:-2 \leq t \leq 2\}$. Then on $\operatorname{Re} z \leq 0, z^{4}+z-2$ has no zero on or outside Γ. Moreover, for any $0<\epsilon<1$, we have

$$
\left|z^{4}+z-2\right|>(1-\epsilon)|z|
$$

on Γ. By Rouché's theorem, the number of zeros of $z^{4}+z-2$ inside Γ is the same as the number of zeros of $z^{4}+\epsilon z-2$ inside Γ. For small enough ϵ, by Rouché's theorem the zeros of $z^{4}+\epsilon z-2$ are close to the zeros of $z^{4}-2$ which are given by $-\sqrt[4]{2}, \sqrt[4]{2} i,-\sqrt[4]{2} i, \sqrt[4]{2}$. By inspection, adding ϵz to $z^{4}-2$ will make the roots $\sqrt[4]{2} i,-\sqrt[4]{2} i$ moving rightwards. This shows that the answer is 1 .

2011Aug\#9C. (i) The definition of $\phi(s)$ is independent of $\epsilon \in(0,2 \pi)$ because the integrand

$$
\frac{e^{(s-1) \log (-z)}}{e^{z}-1}
$$

is analytic in $\mathbb{C} \backslash[0, \infty)$ when $\epsilon \in(0,2 \pi)$.
(ii) Fix ϵ and let

$$
\Gamma_{\epsilon, N}=\Gamma_{\epsilon, N} \cap\{z: \operatorname{Re} z \leq N\}
$$

Then

$$
\phi_{N}(s)=\frac{1}{2 \pi i} \int_{\Gamma_{\epsilon, N}} \frac{e^{(s-1) \log (-z)}}{e^{z}-1} d z
$$

is analytic in s. Moreover, on any compact set $K \subset \mathbb{C}, \phi_{N}(s)$ converges uniformly to $\phi(s)$. This implies analyticity of $\phi(s)$.

Notice that inside Γ_{ϵ}

$$
\frac{1}{e^{z}-1}=\frac{1}{z} \frac{z}{e^{z}-1}
$$

has a pole at $z=0$. Hence

$$
\begin{aligned}
\phi(n) & =\frac{1}{2 \pi i} \int_{\Gamma_{\epsilon}} \frac{(-z)^{n-1}}{e^{z}-1} d z \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{\epsilon}} \frac{1}{z} \frac{z}{e^{z}-1}(-z)^{n-1} d z \\
& =\left.\frac{z}{e^{z}-1}(-z)^{n-1}\right|_{z=0} \\
& = \begin{cases}1 & n=1 \\
0 & n \geq 2\end{cases}
\end{aligned}
$$

