
Corrections are welcome.

2011Aug#1. This problem is the same as 2006Aug#2.

2011Aug#2. (Note that we can not use Fubini’s theorem here.) By Tonel-
li’s theorem (justify applicability), if β 6= 1,∫ ∫

[0,1]×[0,1]

1

(x+ yα)β
dxdy

=

∫ 1

0

(∫ 1

0

1

(x+ yα)β
dx
)
dy

=

∫ 1

0

1

1− β

(
(1 + yα)1−β − yα(1−β)

)
dy.

Since (1 + yα)1−β ≈ 1, the last line is finite if and only if∫ 1

0
yα(1−β)dy <∞.

By the fundamental theorem of calculus, this holds if and only if

α(1− β) > −1.

If β = 1, then the same computation leads to∫ 1

0

(
log(1 + yα)− log(yα)

)
dy

whose finiteness is determined by∫ 1

0
log(yα)dy

which is always finite.

2011Aug#3. (i) B is not compact in (E, ‖ · ‖1) by Riesz’s lemma. More
precisely, consider vectors

en = (0, · · · , 0, 1, 0, · · · )

where 1 occurs in the nth coordinate. Then clearly the sequence {en} is
contained in B. However {en} has no convergent subsequence, as ‖ei−ej‖ =
1 whenever i 6= j.

(ii) Denote

En = {x = (x1, x2, · · · ) : xn+1 = xn+2 = · · · = 0}

and

Bn = B ∩ En.
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Then Bn is a compact set since it is bounded and closed in the finite dimen-
sional space En. Moreover,

B ⊂ U
(
Bn,

1

n+ 1

)
,

meaning that for every x ∈ B, there exists x(n) ∈ Bn such that

‖x− x(n)‖2 ≤
1

n+ 1
.

Such an x(n) can be taken to be the projection of x to the first n coordi-
nates. Now one can prove that B is completely bounded using ε-nets of Bn
for large enough n. Since B is clearly closed in the Banach space (E, ‖ · ‖2),
B is compact.

2011Aug#4. Denote by L the Lebesgue σ-algebra. Then f(x) − f(y) is
L× L-measurable. By Fubini or Tonelli’s theorem (justify applicability),∫ ∫

[0,1]×[0,1]
|f(x)− f(y)|dxdy =

∫ 1

0

(∫ 1

0
|f(x)− f(y)|dx

)
dy <∞

Write

F (y) =

∫ 1

0
|f(x)− f(y)|dx.

Then F (y) <∞ for a.e. y ∈ [0, 1]. Fix such an y, we see that∫ 1

0
|f(x)− c|dx <∞

where c = f(y). This implies f ∈ L1[0, 1].

2011Aug#5. First, notice that since fn → f in Lebesgue measure, there
exists a subsequence nk such that fnk → f a.e. on [0.1]. By Fatou’s lemma
(applied to |fn|2), we see that ‖f‖L2[0,1] ≤ 1.

Given ε > 0, write

En = {x ∈ [0, 1] : |fn(x)− f(x)| > ε}.

Then∣∣ ∫ 1

0
(fn(x)− f(x))g(x)dx

∣∣
≤
∣∣ ∫

En

(fn(x)− f(x))g(x)dx|+ |
∫
Ecn

(fn(x)− f(x))g(x)dx
∣∣

≤
(∫

En

|fn(x)− f(x)|2dx|
)1/2(∫

En

|g(x)|2dx|
)1/2

+

∫
Ecn

|fn(x)− f(x)||g(x)|dx

≤ (‖fn‖L2[0,1] + ‖f‖L2[0,1])
(∫

En

|g(x)|2dx|
)1/2

+ ε

∫
Ecn

|g(x)|dx
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≤ 2
(∫

En

|g(x)|2dx|
)1/2

+ ε‖g‖L2[0,1].

Since |En| → 0 as n→∞, we have(∫
En

|g(x)|2dx|
)1/2

→ 0.

Thus

lim sup
n→∞

∣∣ ∫ 1

0
(fn(x)− f(x))g(x)dx

∣∣ ≤ ε‖g‖L2[0,1].

Since ε > 0 is arbitrary, we conclude the proof.

2011Aug#6. (i) Notice that by

cos(nx+ tn) = cos(nx) cos(tn)− sin(nx) sin(tn),

we have ∫
E

cos(nx+ tn)dx

= cos(tn)

∫ 2π

0
χE(x) cos(nx)dx− sin(tn)

∫ 2π

0
χE(x) sin(nx)dx

→ 0

by the Riemann-Lebesgue lemma.

(ii) This is the same problem as 2010Jan#5.

2011Aug#7R. By the condition, we have fn(x) → f(x) for all x ∈ [0, 1].
In particular, for any ε > 0.

[0, 1] =
⋃
p≥1

⋂
m,n≥p

{x ∈ [0, 1] : |fn(x)− fm(x)| ≤ ε/2}

Now set
Fp =

⋂
m,n≥p

{x ∈ [0, 1] : |fn(x)− fm(x)| ≤ ε/2}.

Then Fp is closed set by the continuity of fn.

We claim that there exists p such that Fp contains an interval. Indeed, if
this is not true then Fp is a nowhere dense. But

[0, 1] =
⋃
p≥1

Fp

which is then a set of first category, contradicting the Baire category theorem
since [0, 1] is complete.

Now suppose (a, b) ⊂ Fp for some fixed p. Then for any x ∈ (a, b),

|fn(x)− fm(x)| ≤ ε/2.
Let m→∞, we see that

|fn(x)− f(x)| ≤ ε/2 < ε.
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This completes the proof.

2011Aug#8R. (i) We claim that the set

Bλ = {(x1, x2, · · · ) ∈ `2(N) : |xn| ≤ λn,∀n}

is compact in `2(N) if and only if

λ = (λ1, λ2, · · · ) ∈ `2(N).

Suppose Bλ is compact, then in particular Bλ is bounded, i.e. there exists
C > 0 such that

‖x‖`2(N) ≤ C
for all x ∈ Bλ. For integer N ≥ 1, let

λ(N) = (λ1, · · · , λN , 0, · · · ).

Then λ(N) ∈ Bλ and thus

‖λ(N)‖`2(N) ≤ C.

Let N →∞, we see that ‖λ‖`2(N) ≤ C.

Suppose λ ∈ `2(N). Let

EN = {(x1, x2, · · · ) ∈ `2(N) : xn = 0,∀n > N}

and

B
(N)
λ = Bλ ∩ EN .

Each B
(N)
λ is compact since it is closed and bounded in a finite dimensional

space. Now because

B
(N)
λ → Bλ

uniformly, we can conclude that Bλ is also compact using complete bound-
edness (Bλ is clearly closed in the Banach space `2(N)).

(ii) We claim that the set

Bµ = {(x1, x2, · · · ) ∈ `2(N) :
∑
n

|xn|2

µ2
n

≤ 1}

is compact in `2(N) if and only if

µ = (µ1, µ2, · · · ) ∈ c0,

i.e. µn → 0 as n→∞.

Suppose µn → 0 as n→∞. Notice that x ∈ Bµ implies∑
n≥N
|xn|2 ≤ sup

n≥N
µ2
n → 0, as N →∞.

Thus arguing as above, one can approximate Bµ uniformly by finite dimen-
sional compact sets and hence is compact (Bµ is clearly closed).
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Suppose Bµ is compact, we now show that µn → 0 as n → ∞. Assume
for contradiction that this is not true. Then there exists δ > 0 and a
subsequence nk such that µ2

nk
≥ δ2. If we set

x(k) = δenk ,

where enk is the indicator of the nkth coordinate. Then x(k) ∈ Bµ, yet

‖x(k) − x(l)‖`2(N) =
√

2δ.

This shows Bµ is not compact, contradiction.

2011Aug#9R. This is essentially the same problem as 2006Aug#7R(a),
or 2008Aug#8R.

2011Aug#7C. Consider D1 = A\(1, 2). Since D1 is simply connected,
u(z) has a harmonic conjugate v1(z) on D1. Denote g1 = u+ iv1, then g1 is
analytic on D1. Let v2 be the harmonic conjugate of u on D2 = A\(−2,−1)
which agrees with v1 in A− = A ∩ {z : Imz < 0}. Write g2 = u+ iv2. Then
on A+ = A ∩ {z : Imz > 0}, g1 and g2 have the same real part, hence differ
only by a purely imaginary constant, i.e. g2 − g1 = iβ on A+. Now fix a
branch of (log z)1 on D1, and let

f(z) = g1(z)− β

2π
(log z)1.

Then clearly f is still analytic on D1. On D2, let (log z)2 be the branch
which agrees with (log z)1 on A−. Then on D2, we have

f(z) = g2(z)− β

2π
(log z)2.

This shows that f(z) is analytic on A, and we have

Ref(z) = u(z)− β

2π
log |z|.

2011Aug#8C. Let Γ be the contour consisting of {z : |z| = 2,Rez ≤ 0}
and {it : −2 ≤ t ≤ 2}. Then on Rez ≤ 0, z4 +z−2 has no zero on or outside
Γ. Moreover, for any 0 < ε < 1, we have

|z4 + z − 2| > (1− ε)|z|

on Γ. By Rouché’s theorem, the number of zeros of z4 + z − 2 inside Γ is
the same as the number of zeros of z4 + εz − 2 inside Γ. For small enough
ε, by Rouché’s theorem the zeros of z4 + εz − 2 are close to the zeros of
z4−2 which are given by − 4

√
2, 4
√

2i,− 4
√

2i, 4
√

2. By inspection, adding εz to
z4 − 2 will make the roots 4

√
2i,− 4

√
2i moving rightwards. This shows that

the answer is 1.
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2011Aug#9C. (i) The definition of φ(s) is independent of ε ∈ (0, 2π)
because the integrand

e(s−1) log(−z)

ez − 1
is analytic in C\[0,∞) when ε ∈ (0, 2π).

(ii) Fix ε and let

Γε,N = Γε,N ∩ {z : Rez ≤ N}.
Then

φN (s) =
1

2πi

∫
Γε,N

e(s−1) log(−z)

ez − 1
dz

is analytic in s. Moreover, on any compact set K ⊂ C, φN (s) converges
uniformly to φ(s). This implies analyticity of φ(s).

Notice that inside Γε
1

ez − 1
=

1

z

z

ez − 1
has a pole at z = 0. Hence

φ(n) =
1

2πi

∫
Γε

(−z)n−1

ez − 1
dz

=
1

2πi

∫
Γε

1

z

z

ez − 1
(−z)n−1dz

=
z

ez − 1
(−z)n−1

∣∣∣
z=0

=

{
1 n = 1
0 n ≥ 2.


