Corrections are welcome.
2012Aug\#1. (a) By convergence of the series we can find a strictly increasing sequence $n_{k}, k=1,2, \cdots$ so that

$$
\left|\sum_{j=M}^{N} a_{j}\right| \leq 2^{-k}
$$

for all $n_{k}<M \leq N$. Now set

$$
b_{j}=2^{k / 2}
$$

for $n_{k}<j \leq n_{k+1}, k=1,2, \cdots$ and $b_{j}=1$ for $j \leq n_{1}$. Then clearly, $\lim _{n \rightarrow \infty} b_{n}=\infty$. Moreover, by Cauchy's test, the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
(b) Wlog assume $b_{n_{k}} \geq 2^{k}$. Now set $a_{n_{k}}=2^{-k}$ and $a_{j}=0$ otherwise.

2012Aug\#2. Denote by $F(t)$ the left hand side. Differentiation under the integral (justify) gives

$$
F^{\prime}(t)=\int_{0}^{\infty} e^{-t x} \sin (x) d x
$$

Integrate by parts twice and move terms, one sees that

$$
F^{\prime}(t)=-\frac{1}{1+t^{2}} .
$$

This means

$$
F(t)=C-\arctan t
$$

for some constant C. Notice that by Lebesgue DCT (justify),

$$
\lim _{t \rightarrow \infty} F(t)=0
$$

On the other hand $\lim _{t \rightarrow \infty} \arctan t=\frac{\pi}{2}$. This shows $C=\frac{\pi}{2}$.
2012Aug\#3. Suppose $T / 2 \leq s \leq T$, then

$$
\begin{aligned}
|f(T)-f(s)| & =\left|\int_{s}^{T} f^{\prime}(t) d t\right| \\
& =\left|\int_{s}^{T} \frac{1}{\sqrt{t}} \sqrt{t} f^{\prime}(t) d t\right| \\
& \leq\left(\int_{s}^{T} \frac{1}{t} d t\right)^{1 / 2}\left(\int_{s}^{T} t\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \\
& \leq\left(\int_{T / 2}^{T} \frac{1}{t} d t\right)^{1 / 2}\left(\int_{T / 2}^{T} t\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

Since

$$
\int_{T / 2}^{T} \frac{1}{t} d t=\log 2
$$

and

$$
\int_{T / 2}^{T} t\left|f^{\prime}(t)\right|^{2} d t \rightarrow 0, \text { as } T \rightarrow \infty
$$

we see that

$$
\sup _{T / 2 \leq t \leq T}|f(T)-f(t)| \rightarrow 0, \text { as } T \rightarrow \infty .
$$

On the other hand,

$$
\frac{1}{T / 2} \int_{T / 2}^{T} f(t) d t=\frac{2}{T} \int_{0}^{T} f(t) d t-\frac{1}{T / 2} \int_{0}^{T / 2} f(t) d t \rightarrow L
$$

Hence

$$
f(T)=\frac{1}{T / 2} \int_{T / 2}^{T} f(t) d t+\frac{1}{T / 2} \int_{T / 2}^{T} f(T)-f(t) d t \rightarrow L .
$$

2012Aug\#4. These two are standard theorems in real analysis texts.
2012Aug\#5. One can take, for example,

$$
\begin{gathered}
f_{1}(x)=1-2 x, \\
f_{2}(x)=2 x-1, \\
f_{3}(x)=\cos (2 \pi x), \\
f_{3 k+l}=f_{l} .
\end{gathered}
$$

2012Aug\#6. By approximation (the standard 3ε-argument), we may assume that f is a trigonometric polynomial. By linearity, we may further assume that $f(x)=e^{2 \pi i j x}$ for some $j \in \mathbb{Z}$. Now notice that

$$
\begin{aligned}
\frac{1}{N} \sum_{k=1}^{N} f(k x) & =\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i j k x} \\
& =\frac{1}{N} \sum_{k=1}^{N}\left(e^{2 \pi i j x}\right)^{k} \\
& =\frac{1}{N} \frac{e^{2 \pi i j(N+1) x}-e^{2 \pi i j x}}{e^{2 \pi i j x}-1}
\end{aligned}
$$

here $e^{2 \pi i j x}-1 \neq 0$ because $x \notin \mathbb{Q}$. This shows

$$
\left|\frac{1}{N} \sum_{k=1}^{N} f(k x)\right| \leq \frac{2}{N} \frac{1}{\left|e^{2 \pi i j x}-1\right|}=\frac{2}{N} \frac{1}{|\sin (\pi i j x)|} \rightarrow 0=\int_{0}^{1} f(x) d x .
$$

2012Aug\#7R. Consider the class of bounded operators

$$
B(x, \cdot): Y \rightarrow Z, \text { where } x \in X,\|x\|_{X} \leq 1 .
$$

Then for any $y \in Y,\left\{B(x, y): x \in X,\|x\|_{X} \leq 1\right\}$ is bounded in Z. By the uniform boundedness principle, this implies

$$
\|B(x, \cdot)\|_{Y \rightarrow Z} \leq C<\infty
$$

for all x with $\|x\|_{X} \leq 1$. This implies

$$
\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y}
$$

for all $x \in X, y \in Y$.
2012Aug\#8R. Notice that

$$
\begin{aligned}
\left\|f_{n}-f\right\|^{2} & =\left\|f_{n}\right\|^{2}+\|f\|^{2}-\left\langle f_{n}, f\right\rangle-\left\langle f, f_{n}\right\rangle \\
& \rightarrow\|f\|^{2}+\|f\|^{2}-\langle f, f\rangle-\langle f, f\rangle \\
& =0
\end{aligned}
$$

2012Aug\#9R. (a) Notice that if $\sum\left|c_{n}\right|<\infty$, then the distributional derivative (justify)

$$
f^{\prime}=\sum_{n=1}^{\infty} c_{n} \delta_{a_{n}}-\sum_{n=1}^{\infty} c_{n} \delta_{b_{n}}
$$

Hence

$$
\left|\left\langle f^{\prime}, \varphi\right\rangle\right| \leq 2\left(\sum\left|c_{n}\right|\right) \max _{x \in \mathbb{R}}|\varphi(x)|
$$

This shows f^{\prime} has order 0 .
(b) If $\sum\left|c_{n}\right|=\infty$, then since c_{n} are reals we may assume that $\sum c_{n_{k}}=\infty$ where $c_{n_{k}}>0$. Let $\chi_{k} \in C_{c}^{\infty}\left(b_{n_{k+1}}, b_{n_{k}}\right)$ with $\chi\left(a_{n_{k}}\right)=1$, and set

$$
\varphi_{N}=\sum_{k=1}^{N} \chi_{k}
$$

Then $\varphi_{N} \in C_{K}^{\infty}(\mathbb{R})$ where $K=\left[0, b_{1}\right]$. However,

$$
\left\langle f^{\prime}, \varphi_{N}\right\rangle=\sum_{k=1}^{N} \varphi_{N}\left(a_{n_{k}}\right)-\varphi_{N}\left(b_{n_{k}}\right)=N=N \max _{x \in \mathbb{R}}\left|\varphi_{N}(x)\right|
$$

This shows f^{\prime} does not have order 0 .
2012Aug\#7C. Fix a branch of $\log z$ in $\mathbb{C} \backslash(-\infty, 0]$. By Cauchy's theorem,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\log x}{x^{2}-1} d x & =\int_{0}^{\infty} \frac{\log (x i)}{(x i)^{2}-1} d(x i) \\
& =-i \int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x+\frac{\pi}{2} \int_{0}^{\infty} \frac{1}{x^{2}+1} d x \\
& =-i \int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x+\left(\frac{\pi}{2}\right)^{2}
\end{aligned}
$$

4

Thus the problem reduces to evaluating

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x
$$

This integral is 0 , because by change of variable $x=1 / y$.

$$
\int_{0}^{1} \frac{\log x}{x^{2}+1} d x=-\int_{1}^{\infty} \frac{\log y}{y^{2}+1} d y
$$

This can also be seen using contour integration: Fix a branch of $\log z$ in $\mathbb{C} \backslash[0, \infty)$ with $\log (t i) \in \mathbb{R}+\pi i$ for $t>0$. For $\epsilon>0$, consider the contour

$$
\Gamma_{\epsilon}=\ell_{+} \cup \gamma \cup \ell_{-}
$$

oriented counter clockwise, where

$$
\begin{aligned}
& \ell_{+}=\{t+i \epsilon: t \geq 0\} \\
& \gamma=\{z:|z|=\epsilon, \operatorname{Re} z \leq 0\} \\
& \ell_{-}=\{t-i \epsilon: t \geq 0\}
\end{aligned}
$$

By the residue theorem

$$
\begin{aligned}
\int_{\Gamma_{\epsilon}} \frac{(\log z)^{2}}{z^{2}+1} d z & =-2 \pi i\left(\frac{(i \pi / 2)^{2}}{2 i}+\frac{(i 3 \pi / 2)^{2}}{-2 i}\right) \\
& =-2 \pi^{3}
\end{aligned}
$$

On the other hand, as $\epsilon \rightarrow 0$, we have

$$
\int_{\gamma} \frac{(\log z)^{2}}{z^{2}+1} d z \rightarrow 0
$$

and

$$
\begin{aligned}
& \int_{\ell_{+}} \frac{(\log z)^{2}}{z^{2}+1} d z+\int_{\ell_{-}} \frac{(\log z)^{2}}{z^{2}+1} d z \\
\rightarrow & -\int_{0}^{\infty} \frac{(\log x)^{2}}{x^{2}+1} d x+\int_{0}^{\infty} \frac{(\log x+2 \pi i)^{2}}{x^{2}+1} d x \\
= & 4 \pi i \int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x-\int_{0}^{\infty} \frac{(2 \pi)^{2}}{x^{2}+1} d x \\
= & 4 \pi i \int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x-2 \pi^{3} .
\end{aligned}
$$

Combining the above we get

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x=0
$$

and hence

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}-1} d x=\frac{\pi^{2}}{4}
$$

2012Aug\#8C. Assume that no such constant $c>0$ exists. Then we can extract a sequence f_{n} satisfying the same conditions such that

$$
f_{n}\left(z_{0}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Since $\left|f_{n}(z)\right| \leq 1$, by Montel's theorem (or the Arzelà-Ascoli theorem) there exists a subsequence n_{k} such that

$$
f_{n_{k}} \rightarrow f
$$

uniformly on $\mathbb{D}(0,1-\epsilon)$. Where $\mathbb{D}(0,1-\epsilon)$ is a disk centered at 0 containing z_{0}. By definition we have $f\left(z_{0}\right)=0$, which contradicts Hurwitz's theorem since $f_{n_{k}}$ has no zero.

2012Aug\#9C. (a) Notice that for $y>0$,

$$
h(x+i y)-h(x-i y)=\int \frac{1}{y} \varphi\left(\frac{t-x}{y}\right) \chi_{(0,1)}(t) f(t) d t
$$

where

$$
\varphi(t)=\frac{1}{\pi} \frac{1}{t^{2}+1}
$$

Since $\frac{1}{y} \varphi\left(\frac{t}{y}\right)$ is an approximation to the identity and $\chi_{(0,1)} f$ is continuous at x, we conclude that, as $y \rightarrow 0^{+}$,

$$
h(x+i y)-h(x-i y) \rightarrow f(x)
$$

(b) Combining with (a), it suffices to show that

$$
\lim _{y \rightarrow 0^{+}} h(x+i y)+h(x-i y)
$$

exists. But

$$
\begin{aligned}
& h(x+i y)+h(x-i y) \\
= & \frac{1}{\pi i} \int_{0}^{1} \frac{(t-x)}{(t-x)^{2}+y^{2}} f(t) d t \\
= & \frac{1}{\pi i} \int_{0}^{1} \frac{(t-x)}{(t-x)^{2}+y^{2}}(f(t)-f(x)) d t+\frac{1}{\pi i} \int_{0}^{1} \frac{(t-x)}{(t-x)^{2}+y^{2}} f(x) d t \\
= & \frac{1}{\pi i} \int_{0}^{1} \frac{(t-x)}{(t-x)^{2}+y^{2}}(f(t)-f(x)) d t+\frac{1}{\pi i} \int_{\substack{|t-x|>\delta \\
0 \leq t \leq 1}} \frac{(t-x)}{(t-x)^{2}+y^{2}} f(x) d t
\end{aligned}
$$

where $\delta=\delta(x)>0$ is fixed so that $(x-\delta, x+\delta) \subset(0,1)$. Since $f \in C^{1}$, the first integrand has bounded dominating function; since $|t-x|>\delta$, so does the second integrand. By the dominated convergence theorem, we conclude

6
that

$$
\begin{aligned}
& \lim _{y \rightarrow 0^{+}} h(x+i y)+h(x-i y) \\
= & \frac{1}{\pi i} \int_{0}^{1} \frac{1}{t-x}(f(t)-f(x)) d t+\frac{1}{\pi i} \int_{\substack{|t-x|>\delta \\
0 \leq t \leq 1}} \frac{1}{t-x} f(x) d t . \\
= & \frac{1}{\pi i} \text { p.v. } \int_{0}^{1} \frac{1}{t-x} f(t) d t .
\end{aligned}
$$

