
Corrections are welcome.

2012Aug#1. (a) By convergence of the series we can find a strictly in-
creasing sequence nk, k = 1, 2, · · · so that∣∣ N∑

j=M

aj
∣∣ ≤ 2−k

for all nk < M ≤ N . Now set

bj = 2k/2

for nk < j ≤ nk+1, k = 1, 2, · · · and bj = 1 for j ≤ n1. Then clearly,
limn→∞ bn = ∞. Moreover, by Cauchy’s test, the series

∑∞
n=1 anbn con-

verges.

(b) Wlog assume bnk ≥ 2k. Now set ank = 2−k and aj = 0 otherwise.

2012Aug#2. Denote by F (t) the left hand side. Differentiation under the
integral (justify) gives

F ′(t) =

∫ ∞
0

e−tx sin(x)dx.

Integrate by parts twice and move terms, one sees that

F ′(t) = − 1

1 + t2
.

This means
F (t) = C − arctan t

for some constant C. Notice that by Lebesgue DCT (justify),

lim
t→∞

F (t) = 0.

On the other hand limt→∞ arctan t = π
2 . This shows C = π

2 .

2012Aug#3. Suppose T/2 ≤ s ≤ T , then

|f(T )− f(s)| =
∣∣ ∫ T

s
f ′(t)dt

∣∣
=
∣∣ ∫ T

s

1√
t

√
tf ′(t)dt

∣∣
≤
( ∫ T

s

1

t
dt
)1/2( ∫ T

s
t|f ′(t)|2dt

)1/2
≤
( ∫ T

T/2

1

t
dt
)1/2( ∫ T

T/2
t|f ′(t)|2dt

)1/2
.

Since ∫ T

T/2

1

t
dt = log 2

1
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and ∫ T

T/2
t|f ′(t)|2dt→ 0, as T →∞,

we see that

sup
T/2≤t≤T

|f(T )− f(t)| → 0, as T →∞.

On the other hand,

1

T/2

∫ T

T/2
f(t)dt =

2

T

∫ T

0
f(t)dt− 1

T/2

∫ T/2

0
f(t)dt→ L.

Hence

f(T ) =
1

T/2

∫ T

T/2
f(t)dt+

1

T/2

∫ T

T/2
f(T )− f(t)dt→ L.

2012Aug#4. These two are standard theorems in real analysis texts.

2012Aug#5. One can take, for example,

f1(x) = 1− 2x,

f2(x) = 2x− 1,

f3(x) = cos(2πx),

f3k+l = fl.

2012Aug#6. By approximation (the standard 3ε-argument), we may as-
sume that f is a trigonometric polynomial. By linearity, we may further
assume that f(x) = e2πijx for some j ∈ Z. Now notice that

1

N

N∑
k=1

f(kx) =
1

N

N∑
k=1

e2πijkx

=
1

N

N∑
k=1

(
e2πijx

)k
=

1

N

e2πij(N+1)x − e2πijx

e2πijx − 1

here e2πijx − 1 6= 0 because x 6∈ Q. This shows∣∣ 1

N

N∑
k=1

f(kx)
∣∣ ≤ 2

N

1

|e2πijx − 1|
=

2

N

1

| sin(πijx)|
→ 0 =

∫ 1

0
f(x)dx.

2012Aug#7R. Consider the class of bounded operators

B(x, ·) : Y → Z, where x ∈ X, ‖x‖X ≤ 1.
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Then for any y ∈ Y , {B(x, y) : x ∈ X, ‖x‖X ≤ 1} is bounded in Z. By the
uniform boundedness principle, this implies

‖B(x, ·)‖Y→Z ≤ C <∞

for all x with ‖x‖X ≤ 1. This implies

‖B(x, y)‖Z ≤ C‖x‖X‖y‖Y
for all x ∈ X, y ∈ Y .

2012Aug#8R. Notice that

‖fn − f‖2 = ‖fn‖2 + ‖f‖2 − 〈fn, f〉 − 〈f, fn〉
→ ‖f‖2 + ‖f‖2 − 〈f, f〉 − 〈f, f〉
= 0.

2012Aug#9R. (a) Notice that if
∑
|cn| < ∞, then the distributional de-

rivative (justify)

f ′ =

∞∑
n=1

cnδan −
∞∑
n=1

cnδbn .

Hence

|〈f ′, ϕ〉| ≤ 2
(∑

|cn|
)

max
x∈R
|ϕ(x)|.

This shows f ′ has order 0.

(b) If
∑
|cn| =∞, then since cn are reals we may assume that

∑
cnk =∞

where cnk > 0. Let χk ∈ C∞c (bnk+1
, bnk) with χ(ank) = 1, and set

ϕN =
N∑
k=1

χk.

Then ϕN ∈ C∞K (R) where K = [0, b1]. However,

〈f ′, ϕN 〉 =
N∑
k=1

ϕN (ank)− ϕN (bnk) = N = N max
x∈R
|ϕN (x)|.

This shows f ′ does not have order 0.

2012Aug#7C. Fix a branch of log z in C\(−∞, 0]. By Cauchy’s theorem,∫ ∞
0

log x

x2 − 1
dx =

∫ ∞
0

log(xi)

(xi)2 − 1
d(xi)

= −i
∫ ∞

0

log x

x2 + 1
dx+

π

2

∫ ∞
0

1

x2 + 1
dx

= −i
∫ ∞

0

log x

x2 + 1
dx+

(π
2

)2
.
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Thus the problem reduces to evaluating∫ ∞
0

log x

x2 + 1
dx.

This integral is 0, because by change of variable x = 1/y.∫ 1

0

log x

x2 + 1
dx = −

∫ ∞
1

log y

y2 + 1
dy.

This can also be seen using contour integration: Fix a branch of log z in
C\[0,∞) with log(ti) ∈ R + πi for t > 0. For ε > 0, consider the contour

Γε = `+ ∪ γ ∪ `−
oriented counter clockwise, where

`+ = {t+ iε : t ≥ 0}
γ = {z : |z| = ε,Rez ≤ 0}
`− = {t− iε : t ≥ 0}.

By the residue theorem∫
Γε

(log z)2

z2 + 1
dz = −2πi

((iπ/2)2

2i
+

(i3π/2)2

−2i

)
= −2π3.

On the other hand, as ε→ 0, we have∫
γ

(log z)2

z2 + 1
dz → 0

and ∫
`+

(log z)2

z2 + 1
dz +

∫
`−

(log z)2

z2 + 1
dz

→ −
∫ ∞

0

(log x)2

x2 + 1
dx+

∫ ∞
0

(log x+ 2πi)2

x2 + 1
dx

= 4πi

∫ ∞
0

log x

x2 + 1
dx−

∫ ∞
0

(2π)2

x2 + 1
dx

= 4πi

∫ ∞
0

log x

x2 + 1
dx− 2π3.

Combining the above we get∫ ∞
0

log x

x2 + 1
dx = 0

and hence ∫ ∞
0

log x

x2 − 1
dx =

π2

4
.
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2012Aug#8C. Assume that no such constant c > 0 exists. Then we can
extract a sequence fn satisfying the same conditions such that

fn(z0)→ 0, as n→∞.

Since |fn(z)| ≤ 1, by Montel’s theorem (or the Arzelà-Ascoli theorem) there
exists a subsequence nk such that

fnk → f

uniformly on D(0, 1−ε). Where D(0, 1−ε) is a disk centered at 0 containing
z0. By definition we have f(z0) = 0, which contradicts Hurwitz’s theorem
since fnk has no zero.

2012Aug#9C. (a) Notice that for y > 0,

h(x+ iy)− h(x− iy) =

∫
1

y
ϕ
( t− x

y

)
χ(0,1)(t)f(t)dt

where

ϕ(t) =
1

π

1

t2 + 1
.

Since 1
yϕ
(
t
y

)
is an approximation to the identity and χ(0,1)f is continuous

at x, we conclude that, as y → 0+,

h(x+ iy)− h(x− iy)→ f(x).

(b) Combining with (a), it suffices to show that

lim
y→0+

h(x+ iy) + h(x− iy)

exists. But

h(x+ iy) + h(x− iy)

=
1

πi

∫ 1

0

(t− x)

(t− x)2 + y2
f(t)dt

=
1

πi

∫ 1

0

(t− x)

(t− x)2 + y2

(
f(t)− f(x)

)
dt+

1

πi

∫ 1

0

(t− x)

(t− x)2 + y2
f(x)dt

=
1

πi

∫ 1

0

(t− x)

(t− x)2 + y2

(
f(t)− f(x)

)
dt+

1

πi

∫
|t−x|>δ
0≤t≤1

(t− x)

(t− x)2 + y2
f(x)dt

where δ = δ(x) > 0 is fixed so that (x− δ, x+ δ) ⊂ (0, 1). Since f ∈ C1, the
first integrand has bounded dominating function; since |t − x| > δ, so does
the second integrand. By the dominated convergence theorem, we conclude



6

that

lim
y→0+

h(x+ iy) + h(x− iy)

=
1

πi

∫ 1

0

1

t− x

(
f(t)− f(x)

)
dt+

1

πi

∫
|t−x|>δ
0≤t≤1

1

t− x
f(x)dt.

=
1

πi
p.v.

∫ 1

0

1

t− x
f(t)dt.


