
Corrections are welcome.

2012Aug#1. By the fundamental theorem of calculus, we can write

f(x1, x2) = f(0, x2) +

∫ x1

0
f1(s, x2)ds.

For the same reason, we can further write

f(x1, x2) = f(0, x2) +

∫ x1

0
f1(s, 0)ds+

∫ x1

0

∫ x2

0
g(s, t)dtds

= f(0, x2) +

∫ x1

0
f1(s, 0)ds+

∫ x2

0

∫ x1

0
g(s, t)dsdt.

Now differentiating f(x1, x2) with respect to x2 gives (justify)

f2(x1, x2) = f2(0, x2) +

∫ x1

0
g(s, x2)ds.

Differentiate f2(x1, x2) with respect to x1, we get

∂

∂x1
f2(x1, x2) = g(x1, x2),

as desired.

2012Aug#2. First, notice that the left hand side is quadratic in a and is
minimized when

a =
1

|B1|

∫
B1

f(y)dy.

(Note that picking a = f(0) will not work for large n.) For x ∈ B1 we write

|f(x)− a| =
∣∣∣ 1

|B1|

∫
B1

f(x)− f(y)dy
∣∣∣

=
∣∣∣ 1

|B1|

∫
B1

∫ 1

0
∇f(tx+ (1− t)y) · (x− y)dtdy

∣∣∣
≤ 2
( 1

|B1|

∫
B1

∫ 1

0
|∇f(tx+ (1− t)y)|2dtdy

)1/2
.

Thus,∫
B1

|f(x)− a|2dx ≤ 4

|B1|

∫
B1

∫
B1

∫ 1

0
|∇f(tx+ (1− t)y)|2dtdydx

=
4

|B1|

∫ 1/2

0

∫
B1

∫
B1

· · · dydxdt+
4

|B1|

∫ 1

1/2

∫
B1

∫
B1

· · · dxdydt

=: I + II
1
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To estimate I, note that for 0 < t ≤ 1/2,∫
B1

|∇f(tx+ (1− t)y)|2dy =
1

(1− t)n

∫
B(tx,1−t)

|∇f(z)|2dz

≤ 2n
∫
B1

|∇f(z)|2dz.

Hence

I ≤ 2n+1

∫
B1

|∇f(z)|2dz.

Similarly,

II ≤ 2n+1

∫
B1

|∇f(z)|2dz.

This shows one can take C = 2n+2.

2012Aug#3. By conjugacy, the problem reduces to the case when A = Jλ
is a Jordan block, i.e. we need to find a complex matrix B so that

expB = Jλ.

Notice that
Jλ = λ(I +N)

where N is a nilpotent matrix. Formally, we have

log(Jλ) = log
(
λ(I +N)

)
= log λ+ log(I +N)

= log λ+

∞∑
k=1

(−1)k−1

k
Nk.

The last series is in fact a finite sum since N is nilpotent. Now if we take

B = (log λ)I +
∑
k≥1

(−1)k−1

k
Nk,

then it should be true that
expB = Jλ.

2012Aug#4. Consider the convolution,

f(x) = χA ∗ χ−A(x) =

∫
R
χA(x− y)χ−A(y)dy.

Then f is a continuous function since χA ∈ L1 and χ−A ∈ L∞. Moreover,
f is supported on A − A, i.e. f(x) 6= 0 implies x ∈ A − A (check). On the
other hand,

f(0) = |A| 6= 0.

Hence A−A contains an interval centered at 0.
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2012Aug#5. First, notice that by Fatou’s lemma (applied to |fn|p) we
also have ‖f‖p ≤ 1.

By the Egorov’s theorem, given ε > 0, there exists E ⊂ [0, 1] such that
|[0, 1]\E| < ε and fn converges uniformly on E. Now

lim sup
n→∞

∫ 1

0
|fn − f |rdx

≤ lim sup
n→∞

∫
E
|fn − f |rdx+ lim sup

n→∞

∫
[0,1]\E

|fn − f |rdx

= lim sup
n→∞

∫
[0,1]\E

|fn − f |rdx.

By Hölder’s inequality, for q = p/r we have∫
[0,1]\E

|fn − f |rdx ≤
(∫

[0,1]\E
|fn − f |pdx

)1/q
|[0, 1]\E|1−1/q

≤ ‖fn − f‖p/qp ε1−1/q

≤ 2p/qε1−1/q.

Since ε > 0 is arbitrary, we conclude

lim sup
n→∞

∫ 1

0
|fn − f |rdx = 0.

2012Aug#6. Notice that

N∑
n=−N

fn =

N∑
n=−N

∫ π

−π
f(t)e−intdt

=

∫ π

−π
f(t)

( N∑
n=−N

e−int
)
dt

=

∫ π

−π
f(t)

sin((N + 1/2)t)

sin(t/2)
dt

=

∫ π

−π

f(t)

sin(t/2)
sin((N + 1/2)t)dt.

By the Riemann-Lebesgue lemma, to prove that

N∑
n=−N

fn → 0

it suffices to show

f(t)

sin(t/2)
∈ L1[−π, π].
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Since | sin(t/2)| ≈ |t| when t ∈ [−π, π] and |f(t)| ≤ | log |t||−2, it reduces to
showing ∫ 1/2

−1/2

1

| log |t||2
1

|t|
dt <∞.

But this is true since by a change of variable∫ 1/2

0

1

| log |t||2
1

t
dt =

∫ ∞
log 2

1

s2
ds <∞.

2012Aug#7R. By considering instead yn = xn−A, we may assume A = 0.
Now we need to find a sequence nk so that∥∥∥ 1

N

N∑
k=1

xnk

∥∥∥→ 0, as N →∞.

Notice that∥∥∥ 1

N

N∑
k=1

xnk

∥∥∥2
=

1

N2

N∑
k=1

‖xnk‖
2 +

1

N2

∑
i,j≤N
i 6=j

〈xni , xnj 〉.

Since the sequence xn is bounded in H, it suffices to make

1

N2
UN → 0

where
UN :=

∑
i,j≤N
i 6=j

〈xni , xnj 〉.

Observe that

UN+1 − UN = 〈xnN+1 , xnN+1〉+
∑
i≤N

(
〈xnN+1 , xni〉+ 〈xni , xnN+1〉

)
.

Suppose xni , i = 1, 2, · · · , N have been chosen. Since xn converges weakly
to 0, we can find nN+1 such that∣∣〈xnN+1 , xni〉+ 〈xni , xnN+1〉

∣∣ ≤ 1

N
.

This implies
|UN+1 − UN | ≤ C

for some constant independent of N . In particular,∣∣ 1

N2
UN
∣∣ ≤ CN

N2
→ 0.

This finishes our inductive choice of nk.

2012Aug#8R. By a smooth cutoff we can find g ∈ C∞c
(
(−2, 2)× (−2, 2)

)
,

such that g = f on [0, 1]× [0, 1]. Expand g into Fourier series, we get

g(x, y) =
∑

(k,l)∈Z2

ck,le
π
2
i(kx+ly)
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where the Fourier coefficients ck,l decay rapidly in |(k, l)|. Notice that

e
π
2
i(kx+ly) = e

π
2
ikxe

π
2
ily.

If we set
gk,l(x) = ck,le

π
2
ikx

and
hk,l(x) = e

π
2
ily,

and reindex the sequence by j so that max(kj , lj) is nondecreasing in j.
Then due to the rapid decay of cj the conclusion follows.

2012Aug#9R. Define

〈T, φ〉 =

∫
Rn

1

|x|n
(
φ(x)− φ(0)

)
dx.

Then T defines a distribution on Rn (check), and for any φ supported in
Rn\{0}, we have

〈T, φ〉 =

∫
Rn

1

|x|n
φ(x)dx.

2012Aug#7C. Identify H with D. Then Schwarz lemma tells us that f is
invariant on D(0, r). Pick ε > 0 sufficiently small so that ir ∈ D(0, 1 − ε).
Then by Cauchy’s integral formula, we have

f ′(ir) =
1

2πi

∫
∂D(0,1−ε)

f(ζ)

(ζ − ir)2
dζ.

This implies

|f ′(ir)| ≤ Cr max
∂D(0,1−ε)

|f(ζ)| ≤ Cr max
D(0,1−ε)

|ζ|

which is independent of f .

2012Aug#8C. Identify H with D. Then F (z) is analytic on D and is
continuous up to boundary by the dominated convergence theorem. By
assumption there is a segment on ∂D on which f ≡ C. If we can show
that this implies f ≡ C on ∂D, then by the Riemann-Lebesgue lemma we
conclude C = 0.

To show that f ≡ C on ∂D, we may assume that C = 0, otherwise we
can consider instead F −C. Now F vanishes on a segment on ∂D. Choosing
appropriate θ ∈ R and N , we see that

G(z) =
N∏
k=1

F (eikθz)

vanishes on the whole boundary, and is analytic in D. By the maximum
modulus principle, this implies g ≡ 0 in D and hence F ≡ 0.
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2012Aug#9C. Consider the contour

ΓR,ε = γ0 ∪ `1 ∪ γ1 ∪ `2
oriented counter clockwise, where

γ0 = {z : |z| = R, Imz ≥ 0}
`1 = {t : −R ≤ t ≤ 1− ε}
γ1 = {z : |z − 1| = ε, Imz ≥ 0}
`2 = {t : 1 + ε ≤ t ≤ R}.

Write f(z) = z
z3−1

. By the residue theorem we have∫
ΓR,ε

f(z)dz = 2πiRes(f, ei2π/3) = −(ei2π/3 − 1)2 = −3e−πi/3.

On the other hand, as R→∞, ε→ 0,∫
γ0

f(z)dz → 0∫
`0

f(z)dz +

∫
`1

f(z)dz → lim
x→0+

{∫ 1−ε

−∞
+

∫ ∞
1+ε

} x

x3 − 1
dx∫

γ1

f(z)dz =

∫
|z−1|=ε
Imz≥0

1

z − 1

z

z2 + z + 1
dz → −πi

3
.

Thus

lim
x→0+

{∫ 1−ε

−∞
+

∫ ∞
1+ε

} x

x3 − 1
dx =

πi

3
− 3e−πi/3.


