Corrections are welcome.
2012Aug\#1. By the fundamental theorem of calculus, we can write

$$
f\left(x_{1}, x_{2}\right)=f\left(0, x_{2}\right)+\int_{0}^{x_{1}} f_{1}\left(s, x_{2}\right) d s
$$

For the same reason, we can further write

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =f\left(0, x_{2}\right)+\int_{0}^{x_{1}} f_{1}(s, 0) d s+\int_{0}^{x_{1}} \int_{0}^{x_{2}} g(s, t) d t d s \\
& =f\left(0, x_{2}\right)+\int_{0}^{x_{1}} f_{1}(s, 0) d s+\int_{0}^{x_{2}} \int_{0}^{x_{1}} g(s, t) d s d t .
\end{aligned}
$$

Now differentiating $f\left(x_{1}, x_{2}\right)$ with respect to x_{2} gives (justify)

$$
f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(0, x_{2}\right)+\int_{0}^{x_{1}} g\left(s, x_{2}\right) d s
$$

Differentiate $f_{2}\left(x_{1}, x_{2}\right)$ with respect to x_{1}, we get

$$
\frac{\partial}{\partial x_{1}} f_{2}\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}\right),
$$

as desired.
2012Aug\#2. First, notice that the left hand side is quadratic in a and is minimized when

$$
a=\frac{1}{\left|B_{1}\right|} \int_{B_{1}} f(y) d y
$$

(Note that picking $a=f(0)$ will not work for large n.) For $x \in B_{1}$ we write

$$
\begin{aligned}
|f(x)-a| & =\left|\frac{1}{\left|B_{1}\right|} \int_{B_{1}} f(x)-f(y) d y\right| \\
& =\left|\frac{1}{\left|B_{1}\right|} \int_{B_{1}} \int_{0}^{1} \nabla f(t x+(1-t) y) \cdot(x-y) d t d y\right| \\
& \leq 2\left(\frac{1}{\left|B_{1}\right|} \int_{B_{1}} \int_{0}^{1}|\nabla f(t x+(1-t) y)|^{2} d t d y\right)^{1 / 2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{B_{1}}|f(x)-a|^{2} d x & \leq \frac{4}{\left|B_{1}\right|} \int_{B_{1}} \int_{B_{1}} \int_{0}^{1}|\nabla f(t x+(1-t) y)|^{2} d t d y d x \\
& =\frac{4}{\left|B_{1}\right|} \int_{0}^{1 / 2} \int_{B_{1}} \int_{B_{1}} \cdots d y d x d t+\frac{4}{\left|B_{1}\right|} \int_{1 / 2}^{1} \int_{B_{1}} \int_{B_{1}} \cdots d x d y d t \\
& =: I+I I
\end{aligned}
$$

To estimate I, note that for $0<t \leq 1 / 2$,

$$
\begin{aligned}
\int_{B_{1}}|\nabla f(t x+(1-t) y)|^{2} d y & =\frac{1}{(1-t)^{n}} \int_{B(t x, 1-t)}|\nabla f(z)|^{2} d z \\
& \leq 2^{n} \int_{B_{1}}|\nabla f(z)|^{2} d z
\end{aligned}
$$

Hence

$$
I \leq 2^{n+1} \int_{B_{1}}|\nabla f(z)|^{2} d z
$$

Similarly,

$$
I I \leq 2^{n+1} \int_{B_{1}}|\nabla f(z)|^{2} d z .
$$

This shows one can take $C=2^{n+2}$.
2012Aug\#3. By conjugacy, the problem reduces to the case when $A=J_{\lambda}$ is a Jordan block, i.e. we need to find a complex matrix B so that

$$
\exp B=J_{\lambda}
$$

Notice that

$$
J_{\lambda}=\lambda(I+N)
$$

where N is a nilpotent matrix. Formally, we have

$$
\begin{aligned}
\log \left(J_{\lambda}\right) & =\log (\lambda(I+N)) \\
& =\log \lambda+\log (I+N) \\
& =\log \lambda+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} N^{k} .
\end{aligned}
$$

The last series is in fact a finite sum since N is nilpotent. Now if we take

$$
B=(\log \lambda) I+\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} N^{k},
$$

then it should be true that

$$
\exp B=J_{\lambda}
$$

2012Aug\#4. Consider the convolution,

$$
f(x)=\chi_{A} * \chi_{-A}(x)=\int_{\mathbb{R}} \chi_{A}(x-y) \chi_{-A}(y) d y .
$$

Then f is a continuous function since $\chi_{A} \in L^{1}$ and $\chi_{-A} \in L^{\infty}$. Moreover, f is supported on $A-A$, i.e. $f(x) \neq 0$ implies $x \in A-A$ (check). On the other hand,

$$
f(0)=|A| \neq 0 .
$$

Hence $A-A$ contains an interval centered at 0 .

2012Aug\#5. First, notice that by Fatou's lemma (applied to $\left|f_{n}\right|^{p}$) we also have $\|f\|_{p} \leq 1$.

By the Egorov's theorem, given $\epsilon>0$, there exists $E \subset[0,1]$ such that $|[0,1] \backslash E|<\epsilon$ and f_{n} converges uniformly on E. Now

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}-f\right|^{r} d x \\
\leq & \limsup _{n \rightarrow \infty} \int_{E}\left|f_{n}-f\right|^{r} d x+\limsup _{n \rightarrow \infty} \int_{[0,1] \backslash E}\left|f_{n}-f\right|^{r} d x \\
= & \limsup _{n \rightarrow \infty} \int_{[0,1] \backslash E}\left|f_{n}-f\right|^{r} d x .
\end{aligned}
$$

By Hölder's inequality, for $q=p / r$ we have

$$
\begin{aligned}
\int_{[0,1] \backslash E}\left|f_{n}-f\right|^{r} d x & \leq\left(\int_{[0,1] \backslash E}\left|f_{n}-f\right|^{p} d x\right)^{1 / q}|[0,1] \backslash E|^{1-1 / q} \\
& \leq\left\|f_{n}-f\right\|_{p}^{p / q} \epsilon^{1-1 / q} \\
& \leq 2^{p / q} \epsilon^{1-1 / q} .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we conclude

$$
\limsup _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}-f\right|^{r} d x=0
$$

2012Aug\#6. Notice that

$$
\begin{aligned}
\sum_{n=-N}^{N} f_{n} & =\sum_{n=-N}^{N} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t \\
& =\int_{-\pi}^{\pi} f(t)\left(\sum_{n=-N}^{N} e^{-i n t}\right) d t \\
& =\int_{-\pi}^{\pi} f(t) \frac{\sin ((N+1 / 2) t)}{\sin (t / 2)} d t \\
& =\int_{-\pi}^{\pi} \frac{f(t)}{\sin (t / 2)} \sin ((N+1 / 2) t) d t
\end{aligned}
$$

By the Riemann-Lebesgue lemma, to prove that

$$
\sum_{n=-N}^{N} f_{n} \rightarrow 0
$$

it suffices to show

$$
\frac{f(t)}{\sin (t / 2)} \in L^{1}[-\pi, \pi] .
$$

Since $|\sin (t / 2)| \approx|t|$ when $t \in[-\pi, \pi]$ and $|f(t)| \leq|\log | t| |^{-2}$, it reduces to showing

$$
\int_{-1 / 2}^{1 / 2} \frac{1}{|\log | t| |^{2}} \frac{1}{|t|} d t<\infty
$$

But this is true since by a change of variable

$$
\int_{0}^{1 / 2} \frac{1}{|\log | t| |^{2}} \frac{1}{t} d t=\int_{\log 2}^{\infty} \frac{1}{s^{2}} d s<\infty
$$

2012Aug\#7R. By considering instead $y_{n}=x_{n}-A$, we may assume $A=0$. Now we need to find a sequence n_{k} so that

$$
\left\|\frac{1}{N} \sum_{k=1}^{N} x_{n_{k}}\right\| \rightarrow 0, \text { as } N \rightarrow \infty
$$

Notice that

$$
\left\|\frac{1}{N} \sum_{k=1}^{N} x_{n_{k}}\right\|^{2}=\frac{1}{N^{2}} \sum_{k=1}^{N}\left\|x_{n_{k}}\right\|^{2}+\frac{1}{N^{2}} \sum_{\substack{i, j \leq N \\ i \neq j}}\left\langle x_{n_{i}}, x_{n_{j}}\right\rangle .
$$

Since the sequence x_{n} is bounded in \mathcal{H}, it suffices to make

$$
\frac{1}{N^{2}} U_{N} \rightarrow 0
$$

where

$$
U_{N}:=\sum_{\substack{i, j \leq N \\ i \neq j}}\left\langle x_{n_{i}}, x_{n_{j}}\right\rangle .
$$

Observe that

$$
U_{N+1}-U_{N}=\left\langle x_{n_{N+1}}, x_{n_{N+1}}\right\rangle+\sum_{i \leq N}\left(\left\langle x_{n_{N+1}}, x_{n_{i}}\right\rangle+\left\langle x_{n_{i}}, x_{n_{N+1}}\right\rangle\right) .
$$

Suppose $x_{n_{i}}, i=1,2, \cdots, N$ have been chosen. Since x_{n} converges weakly to 0 , we can find n_{N+1} such that

$$
\left|\left\langle x_{n_{N+1}}, x_{n_{i}}\right\rangle+\left\langle x_{n_{i}}, x_{n_{N+1}}\right\rangle\right| \leq \frac{1}{N} .
$$

This implies

$$
\left|U_{N+1}-U_{N}\right| \leq C
$$

for some constant independent of N. In particular,

$$
\left|\frac{1}{N^{2}} U_{N}\right| \leq \frac{C N}{N^{2}} \rightarrow 0
$$

This finishes our inductive choice of n_{k}.
2012Aug\#8R. By a smooth cutoff we can find $g \in C_{c}^{\infty}((-2,2) \times(-2,2))$, such that $g=f$ on $[0,1] \times[0,1]$. Expand g into Fourier series, we get

$$
g(x, y)=\sum_{(k, l) \in \mathbb{Z}^{2}} c_{k, l} e^{\frac{\pi}{2} i(k x+l y)}
$$

where the Fourier coefficients $c_{k, l}$ decay rapidly in $|(k, l)|$. Notice that

$$
e^{\frac{\pi}{2} i(k x+l y)}=e^{\frac{\pi}{2} i k x} e^{\frac{\pi}{2} i l y} .
$$

If we set

$$
g_{k, l}(x)=c_{k, l} e^{\frac{\pi}{2} i k x}
$$

and

$$
h_{k, l}(x)=e^{\frac{\pi}{2} i l y},
$$

and reindex the sequence by j so that $\max \left(k_{j}, l_{j}\right)$ is nondecreasing in j. Then due to the rapid decay of c_{j} the conclusion follows.

2012Aug \#9R. Define

$$
\langle T, \phi\rangle=\int_{\mathbb{R}^{n}} \frac{1}{|x|^{n}}(\phi(x)-\phi(0)) d x .
$$

Then T defines a distribution on \mathbb{R}^{n} (check), and for any ϕ supported in $\mathbb{R}^{n} \backslash\{0\}$, we have

$$
\langle T, \phi\rangle=\int_{\mathbb{R}^{n}} \frac{1}{|x|^{n}} \phi(x) d x .
$$

2012Aug\#7C. Identify \mathbb{H} with \mathbb{D}. Then Schwarz lemma tells us that f is invariant on $\mathbb{D}(0, r)$. Pick $\epsilon>0$ sufficiently small so that ir $\in \mathbb{D}(0,1-\epsilon)$. Then by Cauchy's integral formula, we have

$$
f^{\prime}(i r)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}(0,1-\epsilon)} \frac{f(\zeta)}{(\zeta-i r)^{2}} d \zeta .
$$

This implies

$$
\left|f^{\prime}(i r)\right| \leq C_{r} \max _{\partial \mathbb{D}(0,1-\epsilon)}|f(\zeta)| \leq C_{r} \max _{\mathbb{D}(0,1-\epsilon)}|\zeta|
$$

which is independent of f.
2012Aug\#8C. Identify \mathbb{H} with \mathbb{D}. Then $F(z)$ is analytic on \mathbb{D} and is continuous up to boundary by the dominated convergence theorem. By assumption there is a segment on $\partial \mathbb{D}$ on which $f \equiv C$. If we can show that this implies $f \equiv C$ on $\partial \mathbb{D}$, then by the Riemann-Lebesgue lemma we conclude $C=0$.

To show that $f \equiv C$ on $\partial \mathbb{D}$, we may assume that $C=0$, otherwise we can consider instead $F-C$. Now F vanishes on a segment on $\partial \mathbb{D}$. Choosing appropriate $\theta \in \mathbb{R}$ and N, we see that

$$
G(z)=\prod_{k=1}^{N} F\left(e^{i k \theta} z\right)
$$

vanishes on the whole boundary, and is analytic in \mathbb{D}. By the maximum modulus principle, this implies $g \equiv 0$ in \mathbb{D} and hence $F \equiv 0$.

2012Aug\#9C. Consider the contour

$$
\Gamma_{R, \epsilon}=\gamma_{0} \cup \ell_{1} \cup \gamma_{1} \cup \ell_{2}
$$

oriented counter clockwise, where

$$
\begin{aligned}
& \gamma_{0}=\{z:|z|=R, \operatorname{Im} z \geq 0\} \\
& \ell_{1}=\{t:-R \leq t \leq 1-\epsilon\} \\
& \gamma_{1}=\{z:|z-1|=\epsilon, \operatorname{Im} z \geq 0\} \\
& \ell_{2}=\{t: 1+\epsilon \leq t \leq R\} .
\end{aligned}
$$

Write $f(z)=\frac{z}{z^{3}-1}$. By the residue theorem we have

$$
\int_{\Gamma_{R, \epsilon}} f(z) d z=2 \pi i \operatorname{Res}\left(f, e^{i 2 \pi / 3}\right)=-\left(e^{i 2 \pi / 3}-1\right)^{2}=-3 e^{-\pi i / 3} .
$$

On the other hand, as $R \rightarrow \infty, \epsilon \rightarrow 0$,

$$
\begin{aligned}
& \int_{\gamma_{0}} f(z) d z \rightarrow 0 \\
& \int_{\ell_{0}} f(z) d z+\int_{\ell_{1}} f(z) d z \rightarrow \lim _{x \rightarrow 0^{+}}\left\{\int_{-\infty}^{1-\epsilon}+\int_{1+\epsilon}^{\infty}\right\} \frac{x}{x^{3}-1} d x \\
& \int_{\gamma_{1}} f(z) d z=\int_{\substack{|z-1|=\epsilon \\
\operatorname{Im} z \geq 0}} \frac{1}{z-1} \frac{z}{z^{2}+z+1} d z \rightarrow-\frac{\pi i}{3} .
\end{aligned}
$$

Thus

$$
\lim _{x \rightarrow 0^{+}}\left\{\int_{-\infty}^{1-\epsilon}+\int_{1+\epsilon}^{\infty}\right\} \frac{x}{x^{3}-1} d x=\frac{\pi i}{3}-3 e^{-\pi i / 3}
$$

