
Corrections are welcome.

2013Jan#1. Notice that

1

xx
= x−x = e−x log x =

∞∑
n=0

1

n!
(−x log x)n.

Integrating, we see that (justify the exchange of sum and integral)∫ 1

0

1

xx
dx =

∞∑
n=0

1

n!

∫ 1

0
(−x log x)ndx.

Changing the variable t = − log x, we have∫ 1

0
(−x log x)ndx =

∫ ∞
0

e−(n+1)ttndt =
1

(n+ 1)n+1

∫ ∞
0

e−ttndt.

Now integration by parts or noticing∫ ∞
0

e−ttndt = Γ(n+ 1) = n!

gives the desired identity.

2013Jan#2. Notice that

f(x, y) = u · (a, b, c)
where u = 1√

x2+y2+1
(x, y, 1) is a unit vector ranging over the “northern

hemisphere” not including the “equator”. This inner product is largest
when the angle between u and (a, b, c) and is smallest when the angle is
largest. This visualization then quickly produces the answer.

2013Jan#3. It suffices to show

lim sup
n→∞

xn
n
≤ lim inf

n→∞

xn
n

+ ε =: L+ ε

for all ε > 0. Indeed, pick m ≥ 1 such that
xm
m

< L+ ε.

Then for any n we can write n = km+ l where 0 ≤ l < m and k = bn/mc.
By the condition we have

xn
n
≤ kxm

n
+
xl
n

where we set x0 := 0. Now notice that

xl ≤ max
0≤j≤m

xj =: M

and

k ≤ n

m
.

1
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Thus we have
xn
n
≤ xm

m
+
M

n
.

Letting n→∞, we see that

lim sup
n→∞

xn
n
< L+ ε

which completes the proof.

2013Jan#4. One such example is given by

f(x) =

∞∑
n=1

2−n
1√
|x− qn|

where {qn}∞n=1 is an enumeration of Q ∩ [0, 1].

2013Jan#5. Notice that∫ 1

0

∞∑
n=1

|f(x− n)|dx =

∫ 0

−∞
|f(x)|dx <∞

which shows that
∞∑
n=1

f(x− n)

converges a.e. on [0, 1]. The same argument applies to intervals [k, k+1], k ∈
Z and hence shows the convergence on R.

2013Jan#6. a) Notice that since
{

1√
2π
eijx
}
j∈Z

forms an orthonormal basis

of L2[−2π, 2π], we have

Sn(f) :=

n∑
j=−n

〈
f,

eij·√
2π

〉 eijx√
2π
→ f in L2.

Hence in particular

n∑
j=−n

cj

∫ b

a
eijxdx =

∫ b

a
Sn(f)dx

=
〈
χ[a,b], Sn(f)

〉
→
〈
χ[a,b], f

〉
=

∫ b

a
f(x)dx.

This proves a).
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b) Notice that L2[−2π, 2π] ⊂ L1[−2π, 2π] is a dense subspace. Hence by
the uniform boundedness principle , the limit

Ln(f) :=
n∑

j=−n
cj

∫ b

a
eijxdx→ L(f) :=

∫ b

a
f(x)dx

holds also on L1[−2π, 2π] if and only if the functionals Ln satisfy

‖Ln‖(L1)∗ ≤ C
for some C > 0 independent of n. Direct computation shows that

Ln(f) = 〈χ[a,b] ∗Dn, f〉
where

Dn(x) =
n∑

j=−n
eijx = 1 + 2

n∑
j=1

cos(jx)

is the Dirichlet kernel. Hence the problem reduces to showing

‖Ln‖(L1)∗ = ‖χ[a,b] ∗Dn‖L∞ ≤ C.
By the fundamental theorem of calculus, this reduces to the fact that

n∑
j=1

sin(jx)

j

is bounded uniformly in x ∈ [0, 2π] and n ≥ 1. But this is content of, for
example, 2011Jan#3.

2013Jan#7R. We will use the closed graph theorem. Suppose xn → 0 and
Axn → z, we need to show z = 0. Notice that by the condition

〈Axn, y〉 = 〈xn, Ay〉
for any y ∈ H. Let n→∞, this gives

〈z, y〉 = 〈0, Ay〉 = 0.

Which implies z = 0.

2013Jan#8R. The condition implies〈
T,
φ(· − a)− φ(·)

a

〉
= 0.

Let a→ 0, we see that 〈
T,− d

dx
φ
〉

= 0,

or,
d

dx
T = 0.

This implies T = const by, e.g., 2008Aug#8R.
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2013Jan#9R. Notice that by definition, f ∈ Hα(R) if and only if∫
R

(1 + |ξ|2)α|f̂(ξ)|2dξ <∞.

Hence the problem reduces to examining the asymptotics of f̂(ξ) as |ξ| → ∞.

If f = f2 = δ′, then

|f̂(ξ)| ≈ |ξ|.
Thus ∫

R
(1 + |ξ|2)α|f̂(ξ)|2dξ <∞

if and only if 2α+ 2 < −1, i.e. α < −3
2 .

If f = f1 = χ|x|≤1 sin(x3), then integration by parts shows

f̂(ξ) = C
cos(2πξ)

ξ
+O

( 1

|ξ|2
)
, as |ξ| → ∞.

Thus ∫
R

(1 + |ξ|2)α|f̂(ξ)|2dξ <∞

if and only if (check) 2α− 2 < −1, i.e. α < 1
2 .

2013Jan#7C. Notice that the integrand is analytic on {z : |z| ≥ 2}. Thus
by Cauchy’s theorem∮

γ2

z5

z7 + 3z − 10
dz =

∮
γR

z5

z7 + 3z − 10
dz

for all R > 2. Let R→ 2 we see that the limit is 0.

2013Jan#8C. Let

g(z) =
1
2 − z

1− 1
2z
.

Then g ∈ Aut(D) and g(0) = 1/2, g(1/2) = 0. Consider the composition
F = f ◦ g : D → D, which is satisfies F (0) = 0 and F (1/2) = 2/5. Assume
for contradiction that f ′(1/2) = 0, then by the chain rule F ′(0) = 0. Apply
the Schwarz lemma to F (z)/z, we conclude that |F (z)| ≤ |z|2. But this
contradicts F (1/2) = 2/5.

2013Jan#9C. (i) Notice that on Rez ≥ 1 + ε,

|(3k + 5)−z| ≤ (3k + 5)−1−ε.

This implies uniform convergence of the series on Rez ≥ 1 + ε and hence
analyticity of F (z) in Rez > 1+ε. Since ε is arbitrary, we get the conclusion.

(ii) First notice that for Rez > 1, by the fundamental theorem of calculus,∫ ∞
1

(3x+ 5)−zdx =
−1

3(−z + 1)
8−z+1.
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Which is a meromorphic function with a pole at z = 1. Observe also that
for Rez ≥ ε and k = 1, 2, · · · , by the mean value theorem,∣∣∣(3k + 5)−z −

∫ k+1

k
(3x+ 5)−zdx

∣∣∣ ≤ 3|z|(3k + 5)−1−ε.

Thus on any compact set in Rez > 0, the series

G(z) :=
∞∑
k=1

(
(3k + 5)−z −

∫ k+1

k
(3x+ 5)−zdx

)
converges uniformly, and so G(z) defines an analytic function in Rez > 0.
Now since on Rez > 1

F (z) = G(z) +
1

3(z − 1)
8−z+1,

F (z) can be continued to a meromorphic function in Rez > 0 by the above
formula.

(iii) Since G(z) is analytic in Rez > 0,∫
γ
F (z)dz =

∫
γ
G(z)dz +

∫
γ

1

3(z − 1)
8−z+1dz

= 0 +
1

3

∫
γ

1

(z − 1)
8−z+1dz

=
2π

3
i.


