Corrections are welcome.

2013Jan\#1. Notice that

$$
\frac{1}{x^{x}}=x^{-x}=e^{-x \log x}=\sum_{n=0}^{\infty} \frac{1}{n!}(-x \log x)^{n} .
$$

Integrating, we see that (justify the exchange of sum and integral)

$$
\int_{0}^{1} \frac{1}{x^{x}} d x=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1}(-x \log x)^{n} d x .
$$

Changing the variable $t=-\log x$, we have

$$
\int_{0}^{1}(-x \log x)^{n} d x=\int_{0}^{\infty} e^{-(n+1) t} t^{n} d t=\frac{1}{(n+1)^{n+1}} \int_{0}^{\infty} e^{-t} t^{n} d t
$$

Now integration by parts or noticing

$$
\int_{0}^{\infty} e^{-t} t^{n} d t=\Gamma(n+1)=n!
$$

gives the desired identity.
2013Jan\#2. Notice that

$$
f(x, y)=u \cdot(a, b, c)
$$

where $u=\frac{1}{\sqrt{x^{2}+y^{2}+1}}(x, y, 1)$ is a unit vector ranging over the "northern hemisphere" not including the "equator". This inner product is largest when the angle between u and (a, b, c) and is smallest when the angle is largest. This visualization then quickly produces the answer.

2013Jan\#3. It suffices to show

$$
\limsup _{n \rightarrow \infty} \frac{x_{n}}{n} \leq \liminf _{n \rightarrow \infty} \frac{x_{n}}{n}+\epsilon=: L+\epsilon
$$

for all $\epsilon>0$. Indeed, pick $m \geq 1$ such that

$$
\frac{x_{m}}{m}<L+\epsilon .
$$

Then for any n we can write $n=k m+l$ where $0 \leq l<m$ and $k=\lfloor n / m\rfloor$. By the condition we have

$$
\frac{x_{n}}{n} \leq \frac{k x_{m}}{n}+\frac{x_{l}}{n}
$$

where we set $x_{0}:=0$. Now notice that

$$
x_{l} \leq \max _{0 \leq j \leq m} x_{j}=: M
$$

and

$$
k \leq \frac{n}{m} .
$$

Thus we have

$$
\frac{x_{n}}{n} \leq \frac{x_{m}}{m}+\frac{M}{n} .
$$

Letting $n \rightarrow \infty$, we see that

$$
\limsup _{n \rightarrow \infty} \frac{x_{n}}{n}<L+\epsilon
$$

which completes the proof.
2013Jan\#4. One such example is given by

$$
f(x)=\sum_{n=1}^{\infty} 2^{-n} \frac{1}{\sqrt{\left|x-q_{n}\right|}}
$$

where $\left\{q_{n}\right\}_{n=1}^{\infty}$ is an enumeration of $\mathbb{Q} \cap[0,1]$.
2013Jan\#5. Notice that

$$
\int_{0}^{1} \sum_{n=1}^{\infty}|f(x-n)| d x=\int_{-\infty}^{0}|f(x)| d x<\infty
$$

which shows that

$$
\sum_{n=1}^{\infty} f(x-n)
$$

converges a.e. on $[0,1]$. The same argument applies to intervals $[k, k+1], k \in$ \mathbb{Z} and hence shows the convergence on \mathbb{R}.

2013Jan\#6. a) Notice that since $\left\{\frac{1}{\sqrt{2 \pi}} e^{i j x}\right\}_{j \in \mathbb{Z}}$ forms an orthonormal basis of $L^{2}[-2 \pi, 2 \pi]$, we have

$$
S_{n}(f):=\sum_{j=-n}^{n}\left\langle f, \frac{e^{i j .}}{\sqrt{2 \pi}}\right\rangle \frac{e^{i j x}}{\sqrt{2 \pi}} \rightarrow f \text { in } L^{2}
$$

Hence in particular

$$
\begin{aligned}
\sum_{j=-n}^{n} c_{j} \int_{a}^{b} e^{i j x} d x & =\int_{a}^{b} S_{n}(f) d x \\
& =\left\langle\chi_{[a, b]}, S_{n}(f)\right\rangle \\
& \rightarrow\left\langle\chi_{[a, b]}, f\right\rangle \\
& =\int_{a}^{b} f(x) d x .
\end{aligned}
$$

This proves a).
b) Notice that $L^{2}[-2 \pi, 2 \pi] \subset L^{1}[-2 \pi, 2 \pi]$ is a dense subspace. Hence by the uniform boundedness principle, the limit

$$
L_{n}(f):=\sum_{j=-n}^{n} c_{j} \int_{a}^{b} e^{i j x} d x \rightarrow L(f):=\int_{a}^{b} f(x) d x
$$

holds also on $L^{1}[-2 \pi, 2 \pi]$ if and only if the functionals L_{n} satisfy

$$
\left\|L_{n}\right\|_{\left(L^{1}\right)^{*}} \leq C
$$

for some $C>0$ independent of n. Direct computation shows that

$$
L_{n}(f)=\left\langle\chi_{[a, b]} * D_{n}, f\right\rangle
$$

where

$$
D_{n}(x)=\sum_{j=-n}^{n} e^{i j x}=1+2 \sum_{j=1}^{n} \cos (j x)
$$

is the Dirichlet kernel. Hence the problem reduces to showing

$$
\left\|L_{n}\right\|_{\left(L^{1}\right)^{*}}=\left\|\chi_{[a, b]} * D_{n}\right\|_{L^{\infty}} \leq C .
$$

By the fundamental theorem of calculus, this reduces to the fact that

$$
\sum_{j=1}^{n} \frac{\sin (j x)}{j}
$$

is bounded uniformly in $x \in[0,2 \pi]$ and $n \geq 1$. But this is content of, for example, 2011Jan\#3.

2013Jan\#7R. We will use the closed graph theorem. Suppose $x_{n} \rightarrow 0$ and $A x_{n} \rightarrow z$, we need to show $z=0$. Notice that by the condition

$$
\left\langle A x_{n}, y\right\rangle=\left\langle x_{n}, A y\right\rangle
$$

for any $y \in H$. Let $n \rightarrow \infty$, this gives

$$
\langle z, y\rangle=\langle 0, A y\rangle=0 .
$$

Which implies $z=0$.
2013Jan\#8R. The condition implies

$$
\left\langle T, \frac{\phi(\cdot-a)-\phi(\cdot)}{a}\right\rangle=0 .
$$

Let $a \rightarrow 0$, we see that

$$
\left\langle T,-\frac{d}{d x} \phi\right\rangle=0,
$$

or,

$$
\frac{d}{d x} T=0 .
$$

This implies $T=$ const by, e.g., 2008Aug\#8R.

2013Jan\#9R. Notice that by definition, $f \in H^{\alpha}(\mathbb{R})$ if and only if

$$
\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{\alpha}|\hat{f}(\xi)|^{2} d \xi<\infty
$$

Hence the problem reduces to examining the asymptotics of $\hat{f}(\xi)$ as $|\xi| \rightarrow \infty$.
If $f=f_{2}=\delta^{\prime}$, then

$$
|\hat{f}(\xi)| \approx|\xi| .
$$

Thus

$$
\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{\alpha}|\hat{f}(\xi)|^{2} d \xi<\infty
$$

if and only if $2 \alpha+2<-1$, i.e. $\alpha<-\frac{3}{2}$.
If $f=f_{1}=\chi_{|x| \leq 1} \sin \left(x^{3}\right)$, then integration by parts shows

$$
\hat{f}(\xi)=C \frac{\cos (2 \pi \xi)}{\xi}+O\left(\frac{1}{|\xi|^{2}}\right), \text { as }|\xi| \rightarrow \infty
$$

Thus

$$
\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{\alpha}|\hat{f}(\xi)|^{2} d \xi<\infty
$$

if and only if (check) $2 \alpha-2<-1$, i.e. $\alpha<\frac{1}{2}$.
2013Jan\#7C. Notice that the integrand is analytic on $\{z:|z| \geq 2\}$. Thus by Cauchy's theorem

$$
\oint_{\gamma_{2}} \frac{z^{5}}{z^{7}+3 z-10} d z=\oint_{\gamma_{R}} \frac{z^{5}}{z^{7}+3 z-10} d z
$$

for all $R>2$. Let $R \rightarrow 2$ we see that the limit is 0 .
2013Jan\#8C. Let

$$
g(z)=\frac{\frac{1}{2}-z}{1-\frac{1}{2} z}
$$

Then $g \in \operatorname{Aut}(\mathbb{D})$ and $g(0)=1 / 2, g(1 / 2)=0$. Consider the composition $F=f \circ g: \mathbb{D} \rightarrow \mathbb{D}$, which is satisfies $F(0)=0$ and $F(1 / 2)=2 / 5$. Assume for contradiction that $f^{\prime}(1 / 2)=0$, then by the chain rule $F^{\prime}(0)=0$. Apply the Schwarz lemma to $F(z) / z$, we conclude that $|F(z)| \leq|z|^{2}$. But this contradicts $F(1 / 2)=2 / 5$.

2013Jan\#9C. (i) Notice that on $\operatorname{Re} z \geq 1+\epsilon$,

$$
\left|(3 k+5)^{-z}\right| \leq(3 k+5)^{-1-\epsilon} .
$$

This implies uniform convergence of the series on $\operatorname{Re} z \geq 1+\epsilon$ and hence analyticity of $F(z)$ in $\operatorname{Re} z>1+\epsilon$. Since ϵ is arbitrary, we get the conclusion.
(ii) First notice that for $\operatorname{Re} z>1$, by the fundamental theorem of calculus,

$$
\int_{1}^{\infty}(3 x+5)^{-z} d x=\frac{-1}{3(-z+1)} 8^{-z+1}
$$

Which is a meromorphic function with a pole at $z=1$. Observe also that for $\operatorname{Re} z \geq \epsilon$ and $k=1,2, \cdots$, by the mean value theorem,

$$
\left|(3 k+5)^{-z}-\int_{k}^{k+1}(3 x+5)^{-z} d x\right| \leq 3|z|(3 k+5)^{-1-\epsilon}
$$

Thus on any compact set in $\operatorname{Re} z>0$, the series

$$
G(z):=\sum_{k=1}^{\infty}\left((3 k+5)^{-z}-\int_{k}^{k+1}(3 x+5)^{-z} d x\right)
$$

converges uniformly, and so $G(z)$ defines an analytic function in $\operatorname{Re} z>0$. Now since on $\operatorname{Re} z>1$

$$
F(z)=G(z)+\frac{1}{3(z-1)} 8^{-z+1}
$$

$F(z)$ can be continued to a meromorphic function in $\operatorname{Re} z>0$ by the above formula.
(iii) Since $G(z)$ is analytic in $\operatorname{Re} z>0$,

$$
\begin{aligned}
\int_{\gamma} F(z) d z & =\int_{\gamma} G(z) d z+\int_{\gamma} \frac{1}{3(z-1)} 8^{-z+1} d z \\
& =0+\frac{1}{3} \int_{\gamma} \frac{1}{(z-1)} 8^{-z+1} d z \\
& =\frac{2 \pi}{3} i
\end{aligned}
$$

