1. BAIRE CATEGORY

Basic tools: Baire category theorem.

2011Aug#7R. Assume that $f_n \in C([0,1])$ and, as a sequence of numbers, $f_n(x)$ converges to a finite number f(x) for each $x \in [0,1]$. Prove that for any $\epsilon > 0$, there is a non-empty interval (a,b) and an integer p such that $\sup_{x \in (a,b)} |f(x) - f(y)| < \epsilon$ for any n > p.

2011Jan#7R. Is it possible to find a real-valued function f defined on [0, 1] such that $\lim_{x\to t} |f(x)| = \infty$ for every rational $t \in [0, 1]$?

2010Aug#7R. Let $\{f_n\}_{n\geq 1}$ be a sequence of real valued continuous functions on the interval [0,1], and let E be the set of $x \in [0,1]$ for which $\sup_n |f_n(x)| = \infty$.

Show that E cannot be $[0,1] \cap \mathbb{Q}$.

2009Aug#9R. If $I \subset \mathbb{R}$ is a closed interval, a function $f: I \to \mathbb{R}$ is monotonic on I if either it is non-decreasing on I or it is non-increasing on I. A function f on the interval [0,1] is said to be nowhere monotonic if there is no closed subinterval $I \subset [0,1]$ on which f is monotonic. Prove that there exists a continuous function f on [0,1] which is nowhere monotonic. Hint: It may be easier to show more: the "typical" function in the space

C[0,1] of real-valued continuous functions on [0,1] is nowhere monotonic.