1. Fourier series

Basic tools: Plancherel's theorem, Riemann-Lebesgue lemma, integration by parts, Dirichlet kernel, etc.

2013Jan#6. Assume that $f \in L^2[-\pi, \pi]$ and $c_j = (2\pi)^{-1} \int_{-\pi}^{\pi} f(x) e^{-ijx} dx$. a) Prove that

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{j=-n}^{n} c_j \int_{a}^{b} e^{ijx}dx$$

for any $[a,b] \subset [-\pi,\pi]$.

b)* Does this statement remain true if $f \in L^1[-\pi,\pi]$?

2012Aug#6. Let f be a continuous function on \mathbb{R} of period 1. Show that for each irrational x

$$N^{-1}\sum_{k=1}^{N} f(kx) \to \int_{0}^{1} f(t)dt$$
, as $N \to \infty$.

Remark: This is called Weyl's equidistribution theorem.

2012Jan#6. Let $f \in L^1([-\pi,\pi])$ and $f_n = \int_{-\pi}^{\pi} f(t)e^{-int}dt$. Assume that

$$|f(t)| \le \frac{1}{\left|\log|t|\right|^2}.$$

Show that $\sum_{n=-N}^{N} f_n$ converges as $N \to \infty$.

2012Jan#8R.^{*} Show that every function $f \in C^{\infty}([0,1] \times [0,1])$ can be written as

$$f(x,y) = \sum_{j=1}^{\infty} g_j(x) h_j(y), \ x, y \in [0,1]$$

with $g_j, h_j \in C^{\infty}([0, 1])$ satisfying, for every m, k,

$$||g_j||_{C^m([0,1])} \times ||h_j||_{C^m([0,1])} \le \frac{C_{m,k}}{j^k}.$$

2011Aug#6.^{*} Assume that $E \subset [0, 2\pi]$ and its Lebesgue measure is positive.

(i) Show that, for any sequence t_n of real numbers,

$$\lim_{n \to \infty} \int_E \cos(nx + t_n) dx = 0.$$

(ii) Let a_n and b_n satisfy

$$\lim_{n \to \infty} a_n \cos(nx) + b_n \sin(nx) = 0, \quad \forall x \in E.$$

Prove that a_n and b_n tend to zero as $n \to \infty$. Added: (iii) If in (ii) the limit exists and is finite, prove the same conclusion.

2010Aug#6. Let I = [0, 1], and define for $f \in L^2(I)$ the Fourier coefficients as

$$\widehat{f}_k = \int_0^1 f(t) e^{-2\pi kt} dt.$$

(i) Let \mathcal{G} be the set of all $L^2(I)$ functions with the property that $|\widehat{f}_k| \leq |k|^{-3/5}$ for all $k \in \mathbb{Z}$. Prove that \mathcal{G} is a compact subset of $L^2(I)$.

(ii) Let \mathcal{E} be the set of all $L^2(I)$ functions with the property that $\sum_k |\widehat{f}_k|^{5/3} \leq 10^{-10}$. Is \mathcal{E} a compact subset of $L^2(I)$?

2010Jan#5. 1) Let $f \in L^1([0, 2\pi])$. Prove that $\int_0^{2\pi} f(x) \cos(nx) dx \to 0$, as $n \to \infty$. You are asked to a proof, not simply to quote a Theorem. By essentially the same proof, that you are not asked to repeat, one also has $\int_0^{2\pi} f(x) \sin(nx) dx \to 0$, as $n \to \infty$. Prove that, for any sequence (α_n) in \mathbb{R} , $\int_0^{2\pi} f(x) \cos^2(nx + \alpha_n) dx \to \frac{1}{2} \int_0^{2\pi} f(x) dx$. 2) Let (a_n) and (b_n) be sequences in \mathbb{R} such that on a set of positive

2) Let (a_n) and (b_n) be sequences in \mathbb{R} such that on a set of positive measure in $[0, 2\pi]$, $a_n \cos nx + b_n \sin nx$ tends pointwise to 0. Prove that a_n and $b_n \to 0$.

Hint: Write $a_n \cos nx + b_n \sin nx = \rho_n \cos(nx + \alpha_n)$ and use that fact that $\cos^2 \theta \le |\cos \theta|$.

 $\mathbf{2}$