1. Fourier series

Basic tools: Plancherel's theorem, Riemann-Lebesgue lemma, integration by parts, Dirichlet kernel, etc.

2013Jan\#6. Assume that $f \in L^{2}[-\pi, \pi]$ and $c_{j}=(2 \pi)^{-1} \int_{-\pi}^{\pi} f(x) e^{-i j x} d x$.
a) Prove that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{j=-n}^{n} c_{j} \int_{a}^{b} e^{i j x} d x
$$

for any $[a, b] \subset[-\pi, \pi]$.
b)* Does this statement remain true if $f \in L^{1}[-\pi, \pi]$?

2012Aug\#6. Let f be a continuous function on \mathbb{R} of period 1 . Show that for each irrational x

$$
N^{-1} \sum_{k=1}^{N} f(k x) \rightarrow \int_{0}^{1} f(t) d t, \quad \text { as } N \rightarrow \infty .
$$

Remark: This is called Weyl's equidistribution theorem.
2012Jan\#6. Let $f \in L^{1}([-\pi, \pi])$ and $f_{n}=\int_{-\pi}^{\pi} f(t) e^{-i n t} d t$. Assume that

$$
|f(t)| \leq \frac{1}{|\log | t| |^{2}}
$$

Show that $\sum_{n=-N}^{N} f_{n}$ converges as $N \rightarrow \infty$.
2012Jan\#8R.* Show that every function $f \in C^{\infty}([0,1] \times[0,1])$ can be written as

$$
f(x, y)=\sum_{j=1}^{\infty} g_{j}(x) h_{j}(y), \quad x, y \in[0,1]
$$

with $g_{j}, h_{j} \in C^{\infty}([0,1])$ satisfying, for every m, k,

$$
\left\|g_{j}\right\|_{C^{m}([0,1])} \times\left\|h_{j}\right\|_{C^{m}([0,1])} \leq \frac{C_{m, k}}{j^{k}}
$$

2011Aug\#6.* Assume that $E \subset[0,2 \pi]$ and its Lebesgue measure is positive.
(i) Show that, for any sequence t_{n} of real numbers,

$$
\lim _{n \rightarrow \infty} \int_{E} \cos \left(n x+t_{n}\right) d x=0
$$

(ii) Let a_{n} and b_{n} satisfy

$$
\lim _{n \rightarrow \infty} a_{n} \cos (n x)+b_{n} \sin (n x)=0, \quad \forall x \in E .
$$

Prove that a_{n} and b_{n} tend to zero as $n \rightarrow \infty$.
Added: (iii) If in (ii) the limit exists and is finite, prove the same conclusion.
2010Aug\#6. Let $I=[0,1]$, and define for $f \in L^{2}(I)$ the Fourier coefficients as

$$
\widehat{f_{k}}=\int_{0}^{1} f(t) e^{-2 \pi k t} d t
$$

(i) Let \mathcal{G} be the set of all $L^{2}(I)$ functions with the property that $\left|\widehat{f}_{k}\right| \leq$ $|k|^{-3 / 5}$ for all $k \in \mathbb{Z}$. Prove that \mathcal{G} is a compact subset of $L^{2}(I)$.
(ii) Let \mathcal{E} be the set of all $L^{2}(I)$ functions with the property that $\sum_{k}\left|\widehat{f_{k}}\right|^{5 / 3} \leq$ 10^{-10}. Is \mathcal{E} a compact subset of $L^{2}(I)$?

2010Jan\#5. 1) Let $f \in L^{1}([0,2 \pi])$. Prove that $\int_{0}^{2 \pi} f(x) \cos (n x) d x \rightarrow 0$, as $n \rightarrow \infty$. You are asked to a proof, not simply to quote a Theorem. By essentially the same proof, that you are not asked to repeat, one also has $\int_{0}^{2 \pi} f(x) \sin (n x) d x \rightarrow 0$, as $n \rightarrow \infty$. Prove that, for any sequence $\left(\alpha_{n}\right)$ in \mathbb{R}, $\int_{0}^{2 \pi} f(x) \cos ^{2}\left(n x+\alpha_{n}\right) d x \rightarrow \frac{1}{2} \int_{0}^{2 \pi} f(x) d x$.
2) Let $\left(a_{n}\right)$ and (b_{n}) be sequences in \mathbb{R} such that on a set of positive measure in $[0,2 \pi], a_{n} \cos n x+b_{n} \sin n x$ tends pointwise to 0 . Prove that a_{n} and $b_{n} \rightarrow 0$.
Hint: Write $a_{n} \cos n x+b_{n} \sin n x=\rho_{n} \cos \left(n x+\alpha_{n}\right)$ and use that fact that $\cos ^{2} \theta \leq|\cos \theta|$.

