1. Lebesgue integration

Basic tools: Cauchy-Schwarz inequality, Hölder's inequality, Tonelli's theorem, Fubini's theorem, Minkowski inequality, etc.

2013Jan\#4. Does there exist a function f such that $f \in L^{1}[0,1]$ but $\|f\|_{L^{\infty}[a, b]}=+\infty$ for any $[a, b] \subset[0,1],(a<b)$?

2012Aug\#3. Let f be a C^{1} function on $[0,1)$. Suppose that

$$
\begin{gathered}
\int_{0}^{\infty} t\left|f^{\prime}(t)\right|^{2} d t<\infty \\
\lim _{T \rightarrow+\infty} T^{-1} \int_{0}^{T} f(t) d t=L
\end{gathered}
$$

Show that $f(t) \rightarrow L$ as $t \rightarrow+\infty$.
2012Jan\#2. Let $B_{r}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+\cdots+x_{n}^{2}<r^{2}\right\}$. Let f be a C^{1} real function on B_{2}. Prove that

$$
\inf _{a \in \mathbb{R}} \int_{B_{1}}|f(x)-a|^{2} d x \leq C \sum_{j=1}^{n} \int_{B_{1}}\left|\frac{\partial f}{\partial x_{j}}\right|^{2} d x
$$

for a constant C independent of f.
Remark: This is called Poincaré inequality.
2012Jan\#4.* Let $A \subset \mathbb{R}$ be a set of positive Lebesgue measure. Show that $A-A=\{x-y: x, y \in A\}$ contains a non-empty open interval.
Remark: This is called Steinhaus theorem.
Added: Let $A, B \subset \mathbb{R}$ be sets of positive Lebesgue measure. Show that $A+B=\{x+y: x \in A, y \in B\}$ contains a non-empty open interval.

2011Aug\#2. Find all possible real numbers α, β such that

$$
\iint_{[0,1] \times[0,1]} \frac{1}{\left(x+y^{\alpha}\right)^{\beta}} d x d y<\infty .
$$

2011Aug\#4. Let f be a Lebesgue measurable function on $[0,1]$ with values in \mathbb{R}. Define

$$
G(x, y)=f(x)-f(y)
$$

and suppose that $G \in L^{1}([0,1] \times[0,1])$. Is $f \in L^{1}([0,1])$? Give a proof or find a counterexample.

2010Aug\#4. For each part (i), (ii), (iii) either prove the statement or give a counterexample.
(i) Let P be a polynomial of two variables (not identically zero) and let $E=\left\{(x, y) \in \mathbb{R}^{2}: P(x, y)=0\right\}$.

Prove or disprove: E is a Lebesgue measurable set of measure zero.
(ii) Let $E_{n} \in[0,1]$ be Lebesgue measurable sets, with $\operatorname{meas}\left(E_{n}\right) \leq n^{-1}$. Let $E=\lim \sup E_{n}$, i.e. the set of all $x \in[0,1]$ which belong to E_{n} for infinitely many n.

Prove or disprove: E is a Lebesgue measurable set of measure zero.
(iii) Let f and f_{n} belong to $L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, for every $n \in \mathbb{N}$. Suppose that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left|f_{n}(x)-f(x)\right|^{2} d x=0$.

Prove or disprove: $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d x=\int_{\mathbb{R}} f(x) d x$.

