1. Advanced calculus

Basic tools: Fundamental theorem of calculus, Stokes' theorem, mean value theorem, implicit function theorem, etc.

2013Jan#2. Find $\sup_{(x,y)\in\mathbb{R}^2} f(x,y)$ and $\inf_{(x,y)\in\mathbb{R}^2} f(x,y)$ if

$$f(x,y) = \frac{ax + by + c}{\sqrt{x^2 + y^2 + 1}}, \quad a^2 + b^2 + c^2 > 0.$$

2012Jan#1. Let f be a continuous function on \mathbb{R}^2 . Assume that the limit functions

$$\lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h} = f_1(x_1, x_2)$$
$$\lim_{h \to 0} \frac{f(x_1, x_2 + h) - f(x_1, x_2)}{h} = f_2(x_1, x_2)$$
$$\lim_{h \to 0} \frac{f_1(x_1, x_2 + h) - f_1(x_1, x_2)}{h} = g(x_1, x_2)$$

exist and are continuous on \mathbb{R}^2 . Prove that

$$\lim_{h \to 0} \frac{f_2(x_1 + h, x_2) - f_2(x_1, x_2)}{h} = g(x_1, x_2).$$

Remark: Compare this with Clairaut's theorem.

2011Jan#2. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and define

$$D^+f(x) = \limsup_{\substack{h \to 0 \ h>0}} \frac{f(x+h) - f(x)}{h}.$$

Show that if $D^+f(x) \ge 0$ for every $x \in [a, b]$ then $f(\alpha) \le f(\beta)$ for $\alpha < \beta$ and $\alpha, \beta \in [a, b]$. *Hint: Consider* a(x) = f(x) + cx for small $\epsilon > 0$

Hint: Consider $g(x) = f(x) + \epsilon x$ for small $\epsilon > 0$.

2010Aug#1. Let $\mathcal{D} \subset \mathbb{R}^d, d \geq 2$ be a compact set with smooth boundary $\partial \mathcal{D}$ so that the origin belongs to the interior of \mathcal{D} . For every $y \in \partial \mathcal{D}$ let $\alpha(x) \in [0, \pi)$ be the angle between the position vector x and the outer normal vector $\mathfrak{n}(x)$. Let ω_d be the surface area of the unit sphere in \mathbb{R}^d . Compute

$$\frac{1}{\omega_d} \int_{\partial \mathcal{D}} \frac{\cos(\alpha(x))}{|x|^{d-1}} d\sigma(x)$$

where $d\sigma$ denotes surface measure on $\partial \mathcal{D}$.

Provide complete justifications for your computation. Does (a reasonable interpretation of) your result hold true if d = 1?

2010Jan#1. 1) Evaluate

$$\int_{\Gamma} (x - y^3) dx + x^3 dy,$$

where Γ is the unit circle in \mathbb{R}^2 , with counterclockwise orientation.

2) Find a function λ such that for any closed continuously differentiable curve C (i.e. a curve parameterized by a C^1 map $t \to \gamma(t), t \in [0, 1]$ with $\gamma(0) = \gamma(1)$).

$$\int_{\Gamma} (x - y^3) dx + x^3 dy = \int_{\mathcal{C}} \lambda(x, y) dy.$$

2010Jan#2. 1) Let f be a continuously differentiable function on \mathbb{R}^2 . Assume that at each point

$$\frac{\partial f}{\partial x_1} > \Big| \frac{\partial f}{\partial x_2} \Big|.$$

Show that if $f(x_1, x_2) = f(x'_1, x'_2)$, then $|x'_1 - x_1| < |x'_2 - x_2|$ unless $(x_1, x_2) = (x'_1, x'_2)$.

2) Let ϕ be the map from \mathbb{R}^2 into itself defined by:

$$\phi(x_1, x_2) = \left(x_1 + \sin\left(\frac{x_1}{2} + \frac{x_2}{4}\right), x_2 + \sin\left(\frac{x_1}{4} + \frac{x_2}{2}\right)\right).$$

Show that ϕ is a diffeomorphism from \mathbb{R}^2 onto \mathbb{R}^2 , i.e. a 'smooth' map with smooth inverse. Evaluate the partial derivatives of ϕ^{-1} at the point (0,1). *Hint. Question* 1 *can be used to prove injectivity. For proving surjectivity, a possibility is to prove that* $\phi(\mathbb{R}^2)$ *is closed and open in* \mathbb{R}^2 .