1. Advanced calculus

Basic tools: Fundamental theorem of calculus, Stokes' theorem, mean value theorem, implicit function theorem, etc.

2013Jan\#2. Find $\sup _{(x, y) \in \mathbb{R}^{2}} f(x, y)$ and $\inf _{(x, y) \in \mathbb{R}^{2}} f(x, y)$ if

$$
f(x, y)=\frac{a x+b y+c}{\sqrt{x^{2}+y^{2}+1}}, \quad a^{2}+b^{2}+c^{2}>0 .
$$

2012Jan\#1. Let f be a continuous function on \mathbb{R}^{2}. Assume that the limit functions

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}=f_{1}\left(x_{1}, x_{2}\right) \\
& \lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}+h\right)-f\left(x_{1}, x_{2}\right)}{h}=f_{2}\left(x_{1}, x_{2}\right) \\
& \lim _{h \rightarrow 0} \frac{f_{1}\left(x_{1}, x_{2}+h\right)-f_{1}\left(x_{1}, x_{2}\right)}{h}=g\left(x_{1}, x_{2}\right)
\end{aligned}
$$

exist and are continuous on \mathbb{R}^{2}. Prove that

$$
\lim _{h \rightarrow 0} \frac{f_{2}\left(x_{1}+h, x_{2}\right)-f_{2}\left(x_{1}, x_{2}\right)}{h}=g\left(x_{1}, x_{2}\right) .
$$

Remark: Compare this with Clairaut's theorem.
2011Jan\#2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and define

$$
D^{+} f(x)=\limsup _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(x+h)-f(x)}{h}
$$

Show that if $D^{+} f(x) \geq 0$ for every $x \in[a, b]$ then $f(\alpha) \leq f(\beta)$ for $\alpha<\beta$ and $\alpha, \beta \in[a, b]$.
Hint: Consider $g(x)=f(x)+\epsilon x$ for small $\epsilon>0$.
2010Aug\#1. Let $\mathcal{D} \subset \mathbb{R}^{d}, d \geq 2$ be a compact set with smooth boundary $\partial \mathcal{D}$ so that the origin belongs to the interior of \mathcal{D}. For every $y \in \partial \mathcal{D}$ let $\alpha(x) \in[0, \pi)$ be the angle between the position vector x and the outer normal vector $\mathfrak{n}(x)$. Let ω_{d} be the surface area of the unit sphere in \mathbb{R}^{d}. Compute

$$
\frac{1}{\omega_{d}} \int_{\mathcal{D} \mathcal{D}} \frac{\cos (\alpha(x))}{|x|^{d-1}} d \sigma(x)
$$

where $d \sigma$ denotes surface measure on $\partial \mathcal{D}$.
Provide complete justifications for your computation. Does (a reasonable interpretation of) your result hold true if $d=1$?

2010Jan\#1. 1) Evaluate

$$
\int_{\Gamma}\left(x-y^{3}\right) d x+x^{3} d y
$$

where Γ is the unit circle in \mathbb{R}^{2}, with counterclockwise orientation.
2) Find a function λ such that for any closed continuously differentiable curve \mathcal{C} (i.e. a curve parameterized by a $\mathcal{C}^{1} \operatorname{map} t \rightarrow \gamma(t), t \in[0,1]$ with $\gamma(0)=\gamma(1))$.

$$
\int_{\Gamma}\left(x-y^{3}\right) d x+x^{3} d y=\int_{\mathcal{C}} \lambda(x, y) d y
$$

2010Jan\#2. 1) Let f be a continuously differentiable function on \mathbb{R}^{2}. Assume that at each point

$$
\frac{\partial f}{\partial x_{1}}>\left|\frac{\partial f}{\partial x_{2}}\right|
$$

Show that if $f\left(x_{1}, x_{2}\right)=f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left|x_{1}^{\prime}-x_{1}\right|<\left|x_{2}^{\prime}-x_{2}\right|$ unless $\left(x_{1}, x_{2}\right)=$ $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
2) Let ϕ be the map from \mathbb{R}^{2} into itself defined by:

$$
\phi\left(x_{1}, x_{2}\right)=\left(x_{1}+\sin \left(\frac{x_{1}}{2}+\frac{x_{2}}{4}\right), x_{2}+\sin \left(\frac{x_{1}}{4}+\frac{x_{2}}{2}\right)\right) .
$$

Show that ϕ is a diffeomorphism from \mathbb{R}^{2} onto \mathbb{R}^{2}, i.e. a 'smooth' map with smooth inverse. Evaluate the partial derivatives of ϕ^{-1} at the point $(0,1)$. Hint. Question 1 can be used to prove injectivity. For proving surjectivity, a possibility is to prove that $\phi\left(\mathbb{R}^{2}\right)$ is closed and open in \mathbb{R}^{2}.

