1. Contour integration

Basic tools. Residue theorem, etc.

2013Jan#7C. Evaluate

$$\oint_{\gamma} \frac{z^5}{z^7 + 3z - 10} dz$$

where γ is parametrized by $z = 2e^{it}, 0 \le t \le 2\pi$.

2012Aug#7C. Evaluate

$$\int_0^\infty \frac{\log x}{x^2 - 1} dx.$$

2012Jan#9C. Evaluate

$$\lim_{x \to 0^+} \Big\{ \int_{-\infty}^{1-\epsilon} + \int_{1+\epsilon}^{\infty} \Big\} \frac{x}{x^3 - 1}.$$

2011Aug#9C. Let $\log(-z)$ be a single-valued continuous branch on $\mathbb{C}\setminus[0, +\infty)$ with $\lim_{y\to 0^+} \log(-1-yi) = -\pi i$. Let $\Gamma_{\epsilon}^+ = \{\epsilon i + x : x \ge 0\}$ be a path of integration from $\epsilon i + \infty$ to ϵi and $\Gamma_{\epsilon}^- = \{-\epsilon i + x : x \ge 0\}$ be a path of integration from $-\epsilon i + \infty$ to $-\epsilon i$. Let $\Gamma_{\epsilon}^0 = \{\epsilon e^{i\theta:|\theta-\pi|\le \frac{\pi}{2}}\}$ be a path of integration, oriented counter clockwise. Let $\Gamma_{\epsilon} = \Gamma_{\epsilon}^+ \cup \Gamma_{\epsilon}^0 \cup \Gamma_{\epsilon}^-$. (i) Show that

$$\phi(s) = \frac{1}{2\pi i} \int_{\Gamma_{\epsilon}} \frac{e^{(s-1)\log(-z)}}{e^z - 1} dz$$

is independent of $\epsilon \in (0, 2\pi)$.

(ii) Show that $\phi(s)$ is an entire function in s and $\phi(n) = 0$ for $n = 2, 3, 4, \cdots$. Show that $\phi(1) \neq 0$.

2. Schwarz Lemma

Basic tools. Schwarz lemma, Möbius transformations, Cauchy's integral formulas, etc.

2013Jan#8C. Let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic function satisfying f(1/2) = 0 and f(0) = 2/5. Show that |f'(1/2)| > 0.

Remark: In Schwarz lemma, if f vanishes up to k-th order at 0, then one can conclude $|f(z)| \leq |z|^{k+1}$.

2012Jan#7C.^{*} Let f be a holomorphic function on $\mathbb{H} = \{z : \text{Im} z > 0\}$ satisfying $f(\mathbb{H}) \subset \mathbb{H}$ and f(i) = i. Show that there is a constant $C_r < \infty$ which does not depend on f such that

$$|f'(ir)| < C_r, \ 0 < r < 1.$$

3. Normal convergence

Basic tools. Morera's theorem, Montel's theorem, Hurwitz's theorem, etc.

2013Jan#9C. Let

$$F(z) = \sum_{k=1}^{\infty} (3k+5)^{-z}.$$

(i) Show that this series defines an analytic function in $\{z : \operatorname{Re} z > 1\}$. (ii) Show that it can be continued to a meromorphic function in $\{z : \operatorname{Re} z > 0\}$. (Hint: Compare the series with $\int_0^\infty (3x+5)^{-z} dx$.) (iii) Calculate

$$\int_{\gamma} F(z) dz$$

where γ is parametrized by $z = 1 + e^{it}/2, 0 \le t \le 2\pi$. Remark: Compare this with the Riemann zeta function.

2012Aug#8C.^{*} Let f be a holomorphic function on the unit disc \mathbb{D} . Fix $z_0 \in \mathbb{D}$. Suppose that $f(0) = \frac{1}{2}$, f does not vanish on \mathbb{D} and $|f(z)| \leq 1$. Show that $|f(z_0)| > c$ for some positive constant c independent of f.

4. Boundary values

Basic tools. Cauchy's integral formula, etc.

2012Aug#9C. Let f(x) be a continuous function on [0, 1]. Let

$$h(z) = \frac{1}{2\pi i} \int_0^1 \frac{f(x)}{x - z} dx.$$

(a) Show that

$$\lim_{y \to 0^+} \{h(x+iy) - h(x-iy)\} = f(x), \ 0 < x < 1.$$

(b) Show that if $f \in C^1((0,1))$, then $g(x) = \lim_{y\to 0^+} h(x+iy)$ exists for each $x \in (0,1)$.

Remark: These are called Sokhotski-Plemelj formulas, related to the Riemann-Hilbert problem and the Hilbert transform.

2012Jan#8C. Let $f \in L^1((0,\infty))$. Show that

$$F(z) = \int_0^\infty f(t)e^{itz}dt$$

is holomorphic on Im z > 0. Assume that for every $x \in (-1, 1)$

$$\lim_{y \to 0^+} F(x+iy) = C_y$$

where C is a constant. Show that

$$\int_0^\infty f(t)e^{itx}dt = 0, \ x \in \mathbb{R}.$$

Remark: F(z) is called the Fourier-Laplace transform of f. The conclusion above implies f = 0.

5. Rouché's theorem

Basic tools. Rouché's theorem, etc.

2011Aug#8C. Find the number of zeros of $z^4 + z - 2$ in Rez < 0, counting multiplicity.

6. Analytic continuation

2011Aug#7C. Let u(z) be a harmonic function on

Show that there exists a constant α and a holomorphic function f(z) on A such that

$$\operatorname{Re} f(z) = u(z) - \alpha \log |z|.$$