1. Convergence of functions

Basic tools: Lebesgue's DCT, Monotone convergence theorem, Fatou's lemma, Egorov's theorem, Lusin's theorem, convergence in measure, approximation by "good" functions, Hardy-Littlewood maximal functions, etc.

2013Jan\#5. Let $f \in L^{1}(\mathbb{R})$. Is it true that the series

$$
\sum_{n=1}^{\infty} f(x-n)
$$

converges for Lebesgue almost every $x \in \mathbb{R}$?
2012Aug\#4. (a) Suppose that $f_{n} \rightarrow f$ a.e. on $[0,1]$. Show that $f_{n} \rightarrow f$ on $[0,1]$ in Lebesgue measure.
(b) Suppose that $g_{n} \rightarrow g$ in Lebesgue measure on $[0,1]$. Show that there exists a subsequence $g_{n_{k}}$ such that $g_{n_{k}} \rightarrow g$ a.e. on $[0,1]$.

2012Jan\#5. Let $f_{n} \in L^{p}([0,1])$ with $p>1$. Assume that $\left\|f_{n}\right\|_{L^{p}} \leq 1$ and, as $n \rightarrow \infty, f_{n} \rightarrow f$ a.e. on $[0,1]$. Show that $f \in L^{p}([0,1])$ and for every $1 \leq r<p,\left\|f_{n}-f\right\|_{L^{r}} \rightarrow 0$, as $n \rightarrow \infty$.

2011Aug\#5. Assume that $\left\|f_{n}\right\|_{L^{2}([0,1])} \leq 1$ and $f_{n} \rightarrow f$ in Lebesgue measure as $n \rightarrow 0$. Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=\int_{0}^{1} f(x) g(x) d x$ for every $g \in L^{2}([0,1])$.
Added: If further assume that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{2}([0,1])}=\|f\|_{L^{2}([0,1])}$, prove that $\left\|f_{n}-f\right\|_{L^{2}([0,1])} \rightarrow 0$, as $n \rightarrow \infty$.

2011Jan\#4. Prove: If $E \subset \mathbb{R}$ is of Lebesgue measure zero then there exists $f \in L^{1}(\mathbb{R})$ so that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{1}{r} \int_{x-r}^{x+r} f(y) d y=\infty \text { for every } x \in E \tag{*}
\end{equation*}
$$

Is there a set E of positive Lebesgue measure and a function $f \in L^{1}(\mathbb{R})$ so that (\star) holds?

2011Jan\#5. For $x \in \mathbb{R}$, take $K(x)=|x|^{-1 / 2}\left(1+x^{2}\right)^{-1}$ and let $K_{n}(x)=$ $n K(n x), n=1,2, \cdots$. For $f \in L^{1}(\mathbb{R})$, define $T_{n} f(x)=\int_{\mathbb{R}} K_{n}(x-y) f(y) d y$. Prove or disprove that for every $f \in L^{1}(\mathbb{R}), \sup _{n}\left|T_{n} f(x)\right|<\infty$ for Lebesgue almost every x.

2010Aug\#5. We say that a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ of real-valued measurable functions defined on $[0,1]$ is uniformly integrable if for every $\epsilon>0$ there is a $\delta>0$ so that $\sup _{n \in \mathbb{N}}\left|\int_{E} f_{n} d x\right|<\epsilon$ for all measurable subsets $E \subset[0,1]$ with measure at most δ.

Prove: If $f_{n}:[0,1] \rightarrow \mathbb{R}$ is a uniformly integrable sequence and $f_{n}(x)$ converges to $f(x)$ almost everywhere then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

2010Jan\#4. Find a sequence of bounded measurable sets in \mathbb{R} whose characteristic functions converge weakly in $L^{2}(\mathbb{R})$ to $\frac{1}{2} \chi$, where χ is the characteristic function of the interval $[0,1]$.

Does there exist a sequence of bounded measurable sets in \mathbb{R} whose characteristic functions converge weakly in $L^{2}(\mathbb{R})$ to 2ψ, where ψ is the characteristic function of a set of positive measure?

Recall that a sequence f_{n} in $L^{2}(\mathbb{R})$ tends weakly to $f \in L^{2}(\mathbb{R})$, if and only if for every $g \in L^{2}(\mathbb{R}), \int f_{n} g \rightarrow \int f g$.

2010Jan\#6. (a) Give an example of a sequence of functions $f_{n} \in L^{1}([0,1]), n=$ $1,2, \cdots$, with the following properties:

$$
\begin{gathered}
\text { 1. } \lim _{n \rightarrow \infty} f_{n}(x)=1 \text { for any } x \in[0,1] ; \\
\text { 2. } \lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=2 \text { for any } n=1,2, \cdots
\end{gathered}
$$

(b) Show that if the f_{n} are as in part (a) then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-1\right| d x=1
$$

2009Aug\#4. Let $\left\{f_{0}, f_{1}, \cdots, f_{n}, \cdots\right\}$ be a sequence of Lebesgue measurable functions on the interval $[0,1]$.
(a) Suppose that
(i) $\lim _{n \rightarrow \infty} f_{n}(x)=f_{0}(x)$ for almost every $x \in[0,1]$;
(ii) $\int_{0}^{1}\left|f_{n}(x)\right| d x<+\infty$ for every $n \geq 0$;
(iii) $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=\int_{0}^{1}|f(x)| d x$.

Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.
(b) Suppose that $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.

Prove that there is a subsequence $n_{k} \rightarrow \infty$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}=f_{0}(x)$ for almost every $x \in \mathbb{R}$.

2009Aug\#5. If $f \in L^{1}(\mathbb{R})$ and $y>0$, define $f_{y}(x)=\frac{1}{\sqrt{y}} \int_{\mathbb{R}} f(x-t) e^{-\frac{\pi t^{2}}{y}} d t$.
(a) Prove that for each $y>0$, the function $f_{y} \in L^{1}(\mathbb{R})$; i.e. $\int_{\mathbb{R}}\left|f_{y}(t)\right| d t<$ $+\infty$ for each $y>0$.
(b) Prove that $\lim _{y \rightarrow 0} \int_{\mathbb{R}}\left|f(x)-f_{y}(x)\right| d x=0$.
(c) There exists a constant $C>0$ such that for every $f \in L^{1}(\mathbb{R})$,

$$
\left|\left\{x \in \mathbb{R}: \sup _{y>0}\left|f_{y}(x)\right|>\lambda\right\}\right| \leq \frac{C}{\lambda} \int_{\mathbb{R}}|f(t)| d t .
$$

Using this inequality, prove that if $f \in L^{1}(\mathbb{R})$, then for almost every $x \in \mathbb{R}, \lim _{y \rightarrow 0} f_{y}(x)=f(x)$.

