1. Theory of Distributions

Basic tools: Approximations to the identity, Fourier transform, etc.
2013Jan\#8R. Let T be a distribution on \mathbb{R}. Set $\tau_{a} \phi(x)=\phi(x-a)$ and assume that $\left\langle T, \tau_{a} \phi\right\rangle=\langle T, \phi\rangle$ for all $a \in \mathbb{R}$ and all test functions ϕ. Prove that T is a constant.

2013Jan\#9R. Let δ be the Dirac delta function concentrated at zero and δ^{\prime} be its derivative in the sense of distributions. Consider

$$
f_{1}(x)=\left\{\begin{array}{ll}
0 & |x|>1 \\
\sin \left(x^{3}\right) & |x|<1
\end{array}, \quad f_{2}(x)=\delta^{\prime}(x) .\right.
$$

For $j=1,2$, find $\alpha_{j}=\sup \left\{\alpha: f_{j} \in H^{\alpha}(\mathbb{R})\right\}$, where $H^{\alpha}(\mathbb{R})$ is the Sobolev space of order α.

2012Aug\#9R. Recall that a distribution T on \mathbb{R} has order 0 if for each compact subset K of \mathbb{R},

$$
|\langle T, \varphi\rangle| \leq C_{K} \max _{x \in \mathbb{R}}|\varphi(x)|, \quad \operatorname{supp} \varphi \subset \mathbb{R}, \varphi \in C^{\infty}(\mathbb{R})
$$

Let $0<b_{n+1}<a_{n}<b_{n}$. Let $\chi_{\left[a_{n}, b_{n}\right]}$ be the characteristic function of $\left[a_{n}, b_{n}\right]$ and

$$
f=\sum_{n=1}^{\infty} c_{n} \chi_{\left[a_{n}, b_{n}\right]}, \quad c_{n} \in \mathbb{R} .
$$

Assume that $f \in L^{1}(\mathbb{R})$.
(a) Prove that the distribution derivative f^{\prime} has order 0 if $\sum\left|c_{n}\right|<\infty$.
(b) Prove that f^{\prime} does not have order 0 if $\sum\left|c_{n}\right|=\infty$.

2012Jan\#9R. Consider $f(x)=|x|^{-n}$ on $\mathbb{R}^{n} \backslash\{0\}$. Does there exist a distribution T on \mathbb{R}^{n} such that

$$
\langle T, \phi\rangle=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
$$

for all $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ which have compact support in $\mathbb{R}^{n} \backslash\{0\}$?
2011Aug\#9R. Assume that f is a distribution in $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ and $f_{x}=0$ and $f_{y}=0$ in the sense of distributions. Prove that f is a constant.

2011Jan\#8R. Let $f \in L^{\infty}(\mathbb{R})$ and

$$
\int_{\mathbb{R}} e^{-(x-y)^{2}} f(y)=0
$$

for any $x \in \mathbb{R}$. Prove that $f(x)=0$ for Lebesgue almost every $x \in \mathbb{R}$.

2011Jan\#9R. Let f be a continuous function on \mathbb{R}^{2}. Assume that for every $s \in \mathbb{R}$, as functions in $t \in \mathbb{R}$, the distributional derivatives $\frac{d}{d t} f(t, s) \equiv A_{s}(t)$ and $\frac{d}{d t} f(s, t) \equiv B_{s}(t)$ are in $L^{\infty}(\mathbb{R})$. (However, it is not assumed that $\partial_{x_{1}} f\left(x_{1}, x_{2}\right), \partial_{x_{2}} f\left(x_{1}, x_{2}\right)$ exist in the sense of distributions on \mathbb{R}^{2}.) Suppose that

$$
\sup _{s \in \mathbb{R}}\left\{\left\|A_{s}\right\|_{L^{\infty}(\mathbb{R})}+\left\|B_{s}\right\|_{L^{\infty}(\mathbb{R})}\right\}<\infty .
$$

(i) Let χ be a smooth function on \mathbb{R}^{2} with compact support and $\int \chi(x) d x=$ 1. Let

$$
f_{\epsilon}(x)=\int f(x+\epsilon y) \chi(y) d y
$$

Show that there is a constant C such that

$$
\left|\partial_{x_{1}} f_{1}\left(x_{1}, x_{2}\right)\right| \leq C, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad \epsilon>0 .
$$

(ii) Show that f is (locally) a Lipschitz function.

2010Aug\#8R. In both parts either construct a distribution in $\mathcal{D}^{\prime}(\mathbb{R})$ and prove the appropriate estimates, or show that no such distribution exists.
(i) Is there a distribution $u \in \mathcal{D}^{\prime}(\mathbb{R})$ so that for all $\phi \in C_{0}^{\infty}(\mathbb{R})$ with compact support in $(0, \infty)$ one has

$$
\langle u, \phi\rangle=\int \phi(x)|x|^{-5} d x ?
$$

(ii) Is there a distribution $v \in \mathcal{D}^{\prime}(\mathbb{R})$ so that for all $\phi \in C_{0}^{\infty}(\mathbb{R})$ with compact support in $(0, \infty)$ one has

$$
\langle v, \phi\rangle=\sum_{n=1}^{\infty} \phi^{(n)}\left(2^{-n}\right) ?
$$

2010Jan\#0R. We shall use the following normalization for the Fourier transform on \mathbb{R}^{n}. When it makes (classical) sense:

$$
\hat{f}\left(\xi_{1}, \cdots, \xi_{n}\right)=\int_{\mathbb{R}^{n}} f\left(y_{1}, \cdots, y_{n}\right) e^{-i\left(y_{1} \xi_{1}+\cdots+y_{n} \xi_{n}\right)} d y_{1} \ldots d y_{n}
$$

And the Fourier inversion formula is thus, when it makes sense:

$$
f\left(\xi_{1}, \cdots, \xi_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}\left(\xi_{1}, \cdots, \xi_{n}\right) e^{i\left(x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}\right)} d \xi_{1} \ldots d \xi_{n}
$$

1) Let f be a a bounded function on \mathbb{R}^{2}, explain how (in the theory of tempered distributions) one defines its Fourier transform \hat{f}, even if f is not integrable. What is the Fourier transform of the constant function 1?
2) Let φ be a continuous function with compact support on \mathbb{R}. Its Fourier transform is therefore a continuous function $\hat{\varphi}(\xi)=\int_{-\infty}^{\infty} \varphi(x) e^{-i x \xi} d x$. Let ϕ be the function of two variables defined by

$$
\phi\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}\right)
$$

Find the Fourier transform of ϕ, in terms of $\hat{\varphi}$?
2009Aug\#8R. Let g be a positive decreasing function defined on $(0,+\infty)$. Show that the following are equivalent:
(a) There exists a distribution T on \mathbb{R} such that $\langle T, \varphi\rangle=\int_{0}^{\infty} \varphi(x) g(x) d x$ for all test functions $\varphi \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ which have compact support in the open interval $(0, \infty)$.
(b) There exists a non-negative integer $k \in \mathbb{N}$ and a constant $C>0$ such that for all $x \in(0,1), g(x) \leq C x^{-k}$.

