## 1. MISCELLANEOUS

2012Jan\#3.* Let $A$ be an $n \times n$ invertible real matrix. Show that there is a complex matrix $B$ such that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{B^{k}}{k!}=A
$$

Here $B^{0}=I$ is the identity $n \times n$ matrix.
2010Jan $\#$ 3. For $\lambda>0$, set

$$
F(\lambda)=\int_{0}^{1} e^{-10 \lambda x^{4}+\lambda x^{6}} d x
$$

Prove that there exist $A$ and $C>0$ such that $F(\lambda)=A \lambda^{-1 / 4}+E(\lambda)$, where $|E(\lambda)| \leq C \lambda^{-1 / 2}$.

2009Jan\#4. For $\lambda>0$, define $H(\lambda)=\int_{0}^{\infty} e^{-\lambda\left(x^{3}+x^{5}\right)} d x$. Prove that there are positive constants $A$ and $C$ so that $\left|H(\lambda)-A \lambda^{-\frac{1}{3}}\right| \leq C \lambda^{-1}$ for $\lambda>1$.

Proof. The integrand is decaying exponentially if $x$ stays away from 0 ; when $x$ is close to $0, x^{3}+x^{5} \approx x^{3}$, hence $x^{3}$ has the major effect to the integral. Observe that by change of variable

$$
\int_{0}^{\infty} e^{-\lambda x^{3}} d x=A \lambda^{-1 / 3}
$$

for some positive constant $A$. Hence the problem is to show that the "perturbation" of the above integral by the extra term $x^{5}$ is of order $\lambda^{-1}$, i.e.

$$
\left|\int_{0}^{\infty} e^{-\lambda\left(x^{3}+x^{5}\right)}-e^{-\lambda x^{3}} d x\right| \leq C \lambda^{-1}
$$

for some positive constant $C$.
First observe that the integral on $[1, \infty)$ is decaying rapidly. Indeed,

$$
\begin{aligned}
\int_{1}^{\infty} e^{-\lambda\left(x^{3}+x^{5}\right)} d x & \leq \int_{1}^{\infty} e^{-\lambda x^{3}} d x \\
& =\int_{1}^{\infty} e^{-\lambda t} \frac{1}{3} t^{-2 / 3} d t \\
& \leq \int_{1}^{\infty} e^{-\lambda t} d t \\
& =\frac{e^{-\lambda}}{\lambda} \leq \frac{1}{\lambda}
\end{aligned}
$$

Hence it suffices to show

$$
\int_{0}^{1} e^{-\lambda x^{3}}\left(1-e^{-\lambda x^{5}}\right) d x \leq C \lambda^{-1}
$$

Second, we notice that when $x$ is close to $0,\left(1-e^{-\lambda x^{5}}\right)$ is small. More precisely, we have estimate

$$
1-e^{-\lambda x^{5}} \leq \lambda x^{5}
$$

This follows from the general fact that $1-e^{-t} \leq t$ for all $t \geq 0$ which can be seen by differentiating both sides. Using this the problem reduces to showing

$$
\int_{0}^{1} e^{-\lambda x^{3}} \lambda x^{5} d x \leq C \lambda^{-1}
$$

But

$$
\begin{aligned}
\lambda \int_{0}^{1} e^{-\lambda x^{3}} x^{5} d x & \leq \lambda \int_{0}^{\infty} e^{-\lambda x^{3}} x^{5} d x \\
& =\lambda \int_{0}^{\infty} e^{-\lambda t} t^{5 / 3} \frac{1}{3} t^{-2 / 3} d t \\
& =\frac{\lambda}{3} \int_{0}^{\infty} e^{-\lambda t} t d t \\
& =\frac{\lambda}{3} \frac{1}{\lambda^{2}} \int_{0}^{\infty} e^{-s} s d s \\
& =C \lambda^{-1}
\end{aligned}
$$

This finishes the proof.

