1. Integration/summation by parts

2013Jan\#1. Prove that

$$
\int_{0}^{1} \frac{d x}{x^{x}}=\sum_{n=1}^{\infty} \frac{1}{n^{n}}
$$

Hint: Use the Taylor expansion for the exponential function.
2012Aug\#2. Prove that

$$
\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x=\frac{\pi}{2}-\arctan t, \quad t>0 .
$$

Remark: The left is the Laplace transform of $\operatorname{sinc}(x)$, related to the Dirichlet integral.

2011Jan\#3.* Show that there exists a constant C such that for all $x \in$ $[0,2 \pi]$ and $n=1,2, \cdots$

$$
\left|\sum_{k=1}^{n} \frac{\sin (k x)}{k}\right|<C
$$

Hint: Break the sum into two parts for $k x<1$ and $k x \geq 1$, respectively. Remark: This is the Fourier series of a sawtooth wave.

2009Aug\#6. (a) For which real numbers $a \in \mathbb{R}$ and $b>0$ is it true that $\left|\int_{0}^{N} e^{i x^{b}}(1+x)^{a} d x\right|$ is bounded independently of the number $N>0$?
(b) For which real numbers $a \in \mathbb{R}$ and $b>0$ is it true that the improper integral $\int_{0}^{\infty} e^{i x^{b}}(1+x)^{a} d x$ converges?

