1. INTEGRATION/SUMMATION BY PARTS

2013Jan#1. Prove that

$$\int_0^1 \frac{dx}{x^x} = \sum_{n=1}^\infty \frac{1}{n^n}$$

Hint: Use the Taylor expansion for the exponential function.

2012Aug#2. Prove that

$$\int_0^\infty e^{-tx} \frac{\sin x}{x} dx = \frac{\pi}{2} - \arctan t, \quad t > 0.$$

Remark: The left is the Laplace transform of sinc(x), related to the Dirichlet integral.

2011Jan#3.* Show that there exists a constant C such that for all $x \in$ $[0, 2\pi]$ and $n = 1, 2, \cdots$

$$\Big|\sum_{k=1}^n \frac{\sin(kx)}{k}\Big| < C$$

Hint: Break the sum into two parts for kx < 1 and kx > 1, respectively. Remark: This is the Fourier series of a sawtooth wave.

2009Aug#6. (a) For which real numbers $a \in \mathbb{R}$ and b > 0 is it true that $\left|\int_{0}^{N} e^{ix^{b}}(1+x)^{a}dx\right|$ is bounded independently of the number N > 0? (b) For which real numbers $a \in \mathbb{R}$ and b > 0 is it true that the improper

integral $\int_0^\infty e^{ix^b} (1+x)^a dx$ converges?