1. Sequences and series

Basic tools: Cauchy's tests, Taylor expansions, estimating sums by integrals, alternating series, etc.

2013Jan#3. Suppose $\{x_n\}$ is a numerical sequence such that

$$0 < x_{n+m} \le x_n + x_m$$

for all $n, m \in \mathbb{N}$ and $0 < x_1$. Prove that

$$\lim_{n \to \infty} \frac{x_n}{n}$$

exists.

Hint: Prove that $\lim_{n\to\infty} x_n/n = \liminf_{n\to\infty} x_n/n$. *Remark: This is called Fekete's subadditive lemma.*

2012Aug#1. Let a_n, b_n be real numbers.

(a) Assume that $\sum a_n$ converges. Show that there exists a sequence $b_n \to +\infty$ such that $\sum a_n b_n$ still converges.

(b) Let b_n be an unbounded sequence. Show that there is a convergent series $\sum a_n$ such that $\sum a_n b_n$ diverges.

Added: (c) Assume that $\sum a_n$ diverges. Show that there exists a sequence $b_n \to 0$ such that $\sum a_n b_n$ still diverges.

2011Aug#1.* Let

$$f(x,y) = \sum_{n=1}^{\infty} \frac{x}{x^2 + yn^2}, \ y \neq 0.$$

(i) Show that for each y > 0, $g(y) = \lim_{x \to \infty} f(x, y)$ exists. Evaluate g(y).

(ii) Determine if f(x, y) converges uniformly to g(y) for $y \in (0, \infty)$ as $x \to \infty$.

2010Aug#2. Let

$$s_N(x) = \sum_{n=1}^N (-1)^n \frac{x^{3n}}{n^{2/3}}.$$

Prove that $s_N(x)$ converges to a limit s(x) on [0,1] and that there is a constant C so that

$$\sup_{x \in [0,1]} |s_N(x) - s(x)| \le C N^{-2/3}$$

holds.

2009Aug#1. Let $b \ge 1$. A sequence $\{a_n\}_{n=0}^{\infty}$ of positive real numbers is defined inductively by specifying $a_0 > 0$, and then setting

$$a_{n+1} = \frac{a_n}{2} + \frac{b^3}{2a_n^2}$$

for $n \geq 0$.

(a) Show that if $L = \lim_{n \to \infty} a_n$ exists, then L = b.

(b) Show that there is an open interval $I_b \subset \mathbb{R}$ containing b so if $a_0 \in I_b$,

- then $L = \lim_{n \to \infty} a_n$ exists.
- (c) What can you say about the length of I_b .

2009Aug#2. Let $f(x) = \sum_{n=1}^{\infty} (1 + n^4 x^2)^{-1}$. (a) Show that f is continuously differentiable on $(0, \infty)$.

(b) Show that there is a constant C > 0 so that $f(x) \leq Cx^{-\frac{1}{2}}$ for all $0 < x \le 1$, and $f(x) \le Cx^{-2}$ for $x \ge 1$.

(c) Show that the improper Riemann integral $\int_0^\infty f(x)dx = \lim_{\substack{\epsilon \to 0 \\ N \to \infty}} \int_{\epsilon}^\infty f(x)dx$ exists.

 $\mathbf{2}$