1. Sequences and series

Basic tools: Cauchy's tests, Taylor expansions, estimating sums by integrals, alternating series, etc.

2013Jan\#3. Suppose $\left\{x_{n}\right\}$ is a numerical sequence such that

$$
0<x_{n+m} \leq x_{n}+x_{m}
$$

for all $n, m \in \mathbb{N}$ and $0<x_{1}$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n}
$$

exists.
Hint: Prove that $\lim _{n \rightarrow \infty} x_{n} / n=\liminf _{n \rightarrow \infty} x_{n} / n$.
Remark: This is called Fekete's subadditive lemma.
2012Aug\#1. Let a_{n}, b_{n} be real numbers.
(a) Assume that $\sum a_{n}$ converges. Show that there exists a sequence $b_{n} \rightarrow$ $+\infty$ such that $\sum a_{n} b_{n}$ still converges.
(b) Let b_{n} be an unbounded sequence. Show that there is a convergent series $\sum a_{n}$ such that $\sum a_{n} b_{n}$ diverges.
Added: (c) Assume that $\sum a_{n}$ diverges. Show that there exists a sequence $b_{n} \rightarrow 0$ such that $\sum a_{n} b_{n}$ still diverges.

2011Aug\#1.* Let

$$
f(x, y)=\sum_{n=1}^{\infty} \frac{x}{x^{2}+y n^{2}}, \quad y \neq 0 .
$$

(i) Show that for each $y>0, g(y)=\lim _{x \rightarrow \infty} f(x, y)$ exists. Evaluate $g(y)$.
(ii) Determine if $f(x, y)$ converges uniformly to $g(y)$ for $y \in(0, \infty)$ as $x \rightarrow \infty$.

2010Aug\#2. Let

$$
s_{N}(x)=\sum_{n=1}^{N}(-1)^{n} \frac{x^{3 n}}{n^{2 / 3}} .
$$

Prove that $s_{N}(x)$ converges to a limit $s(x)$ on $[0,1]$ and that there is a constant C so that

$$
\sup _{x \in[0,1]}\left|s_{N}(x)-s(x)\right| \leq C N^{-2 / 3}
$$

holds.
2009Aug\#1. Let $b \geq 1$. A sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ of positive real numbers is defined inductively by specifying $a_{0}>0$, and then setting

$$
a_{n+1}=\frac{a_{n}}{2}+\frac{b^{3}}{2 a_{n}^{2}}
$$

for $n \geq 0$.
(a) Show that if $L=\lim _{n \rightarrow \infty} a_{n}$ exists, then $L=b$.
(b) Show that there is an open interval $I_{b} \subset \mathbb{R}$ containing b so if $a_{0} \in I_{b}$, then $L=\lim _{n \rightarrow \infty} a_{n}$ exists.
(c) What can you say about the length of I_{b}.

2009Aug\#2. Let $f(x)=\sum_{n=1}^{\infty}\left(1+n^{4} x^{2}\right)^{-1}$.
(a) Show that f is continuously differentiable on $(0, \infty)$.
(b) Show that there is a constant $C>0$ so that $f(x) \leq C x^{-\frac{1}{2}}$ for all $0<x \leq 1$, and $f(x) \leq C x^{-2}$ for $x \geq 1$.
(c) Show that the improper Riemann integral $\int_{0}^{\infty} f(x) d x=\lim _{\substack{\epsilon \rightarrow 0 \\ N \rightarrow \infty}} \int_{\epsilon}^{\infty} f(x) d x$ exists.

