
1. Hilbert spaces, Banach spaces

Basic tools: Uniform boundedness principle, closed graph theorem, to-
tal boundedness, Arzelà-Ascoli theorem, Banach fixed-point theorem, Lp

spaces, Cantor’s diagonal argument, etc.

2013Jan#7R. Let H be a Hilbert space, and let A be a linear operator
defined on all of H satisfying 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H. Prove that
A is a bounded operator.
Remark: This is called Hellinger-Toeplitz theorem
Added: (i) Show that if 〈Ax, y〉 = 〈x,Ay〉 holds only for x, y in a dense
subspace H0, then the conclusion may fail. (ii) If instead 〈Ax, y〉 = 〈x,Ay〉
holds for x ∈ H0 and y ∈ H, then the conclusion still holds.

2012Aug#7R. Suppose X,Y, Z are Banach spaces, and B : X ×Y → Z is
a map such that B(x, y) is linear and continuous in x when y is fixed, and it
is linear and continuous in y when x is fixed. Show that there is a constant
C such that

‖B(x, y)‖Z ≤ C‖x‖X‖y‖Y , x ∈ X, y ∈ Y.

2012Aug#8R. Let fn → f weakly in L2(R) and ‖fn‖2 → ‖f‖2 as n→∞.
Show that fn → f strongly in L2(R).

2012Jan#7R. Let xn be a sequence in a Hilbert space H. Assume that, as
n → ∞, xn converges weakly to A ∈ H. Show that there is a subsequence
xnk

such that the sequence

1

N

N∑
k=1

xnk

converges strongly to A in H.
Remark: This is called Banach-Saks theorem.

2011Aug#3. Let E be the vector space of bounded sequences of real
numbers x = (x1, x2, · · · ). Define norms

‖x‖1 = sup |xn|, ‖x‖2 = sup
|xn|
n
.

Let B be the set of E with ‖x‖1 ≤ 1.
(i) Prove or disprove that B is compact in (E, ‖ · ‖1).
(ii) Prove or disprove that B is compact in (E, ‖ · ‖2).

2011Aug#8R. (i) What are the necessary and sufficient conditions on
λn > 0 for the set

{(x1, x2, · · · ) ∈ `2(N) : |xn| ≤ λn, ∀n}
1
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to be compact in `2(N)?
(ii) What are the necessary and sufficient conditions on µn > 0 for the set

{(x1, x2, · · · ) ∈ `2(N) :
∑
n

|xn|2

µ2
n

≤ 1}

to be compact in `2(N)?

2011Jan#1. Let K be a continuous function on the square [0, 1] × [0, 1]
and let g be a continuous function on [0, 1]. Show that there is a unique
continuous function f on [0, 1] so that

f(x) =

∫ x

0
K(x, y)f(y)dy + g(x).

2011Jan#6.∗ Consider the Hilbert space L2([0, 1]) with the inner product

〈f, g〉 =
∫ 1

0 f(t)g(t)dt. Let {en}∞n=1 be an orthonormal system of functions

in L2([0, 1]).
(i) Suppose that en ∈ C1([0, 1]) for all n ∈ N (i.e. the en have continuous
derivatives). Prove that

sup
n

max
x∈[0,1]

|e′n(x)| =∞.

(ii) Suppose that {en}∞n=1 is complete (i.e. if g ∈ L2([0, 1]) and 〈g, en〉 = 0
for all n ∈ N then g = 0 almost everywhere). Prove that

∞∑
n=1

|en(x)|2 =∞ almost everywhere.

2010Aug#3. Let K be a continuous function on the unit square Q =
[0, 1] × [0, 1] with the property that |K(x, y)| < 1 for all (x, y) ∈ Q. Show
that there is a continuous function g defined on [0, 1] so that

g(x) +

∫ 1

0
K(x, y)g(y)dy =

ex

1 + x2
, 0 ≤ x ≤ 1.

2010Aug#9R. Assume that the sequence {xn} of real numbers is such that
xn 6= 0 for some n. Take p ∈ (1,∞) and let G be the set of all sequences
{yn} so that {yn} ∈ `p and

lim
N→∞

N∑
n=1

ynxn = 0.

Prove that G is dense in `p if and only if {xn} /∈ `p where q−1 + p−1 = 1.

2010Jan#7R. LetW be the space of continuous functions f on [0, 1], whose
distributional derivative on (0, 1), is an integrable function.
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In one variable, this simply means that f(x) = f(0) +
∫ x

0 g(t)dt, for some
integrable function g, and then f ′ = g. On W one considers the norm
defined by

‖f‖W = |f(0)|+
∫ 1

0
|f ′(t)|dt.

Let Λ be the space of continuous functions on [0, 1], that are Hölder con-
tinuous of order 1

2 (i.e. function f such that for some constant C > 0, for

every x and y, |f(x)− f(y)| ≤ C|x− y|
1
2 ). On Λ one considers the norm

‖f‖Λ = |f(0)|+ sup
x 6=y

|f(x)− f(y)|
|x− y|

1
2

.

Equipped with these normsW and Λ are Banach spaces. And it is immediate
that the diagonal ∆ ⊂W × Λ, that is the set of all (f, f) for f ∈W ∩ Λ, is
a closed subspace of W × Λ. You are not asked to justify the above.
1) Show that if f ∈W and f ′ ∈ L2 (not only ∈ L1), then f ∈ Λ.
2) For each integer N > 0, set uN (x) = 1

N sin(Nx). Find constants AN such
that, AN → 0 as N →∞, and for every x and y ∈ R

|uN (x)− uN (y)| ≤ AN |x− y|
1
2 .

3) Prove that there is a Hölder continuous function f , of of Hölder exponent
1
2 , defined on [0, 1] (i.e. f /∈ Λ) whose distributional derivative on (0, 1), is
not an integrable function (i.e. f /∈W ).
Even if you were not able to prove the result of question 2, you can use it
for applying the open mapping theorem to the projection of ∆ on Λ, when
arguing by contradiction.

2010Jan#8R. Let H be a Hilbert space on R, with scalar product denoted
by 〈., .〉, and associated norm denoted by ‖ · ‖.
1) Assume that (xn) and (yn) are sequences in H such that ‖xn‖ ≤ 1, ‖yn‖ ≤
1 and 〈xn, yn〉 → 1 as n→∞. Show that (xn − yn)→ 0 as n→∞.
2) Let T be a continuous linear map from H into itself.
2.1) Recall what is the definition of the adjoint operator T ∗.
2.2) Assume that T is self adjoint, i.e. that T ∗ = T . And assume that, for
some sequence xn ∈ H, with ‖xn‖ ≤ 1:

1 = sup
‖x‖≤1

‖T (x)‖ = lim
n→∞

‖T (xn)‖.

Using question 1, show that T 2(xn)− xn tends to 0 as n→∞.
Conclude that at least one of the 2 operators T+1 or T ∗−1 is not invertible.
Here 1 denotes the identity map on H (i.e. 1(x) = x).

2009Aug#3. Let X and Y be normed vector spaces with norms ‖ · ‖X
and ‖ · ‖Y . Let Ω ⊂ X be an open set and let x ∈ Ω. Recall that a
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function F : Ω→ Y is differentiable at Ω ⊂ X if there is a continuous linear
transformation Sx : X → Y such that

lim
‖h‖X→0

‖F (x+ h)− F (x)− Sx(h)‖Y
‖h‖X

= 0.

We then say that Sx is the derivative of F at x.

(a) Let X,Y , and Z be normed vector spaces with norms ‖ · ‖X , ‖ · ‖Y
and ‖ · ‖Z . Let F : X → Y be differentiable at a point x0 ∈ X with
derivative Sx0 , and let G : Y → Z be differentiable at the point F (x0) with
derivative TF (x0). Prove that the composition G ◦ F : X → Z defined by
G ◦ F (x) = G(F (x)) is differentiable at x0, and compute its derivative.

(b) Let Mn denote the space of all real n × n matrices m, and define
F : Mn → Mn by F (m) = m3. Prove that F is differentiable at every
matrix m ∈Mn, and compute the derivative of F .

(c) Let Ω ⊂ Mn denote the set of invertible n × n matrices, and define
G : Ω → Mn by setting G(m) = m−1. Prove that Ω is an open subset of
Mn, and that G is differentiable at every point m ∈ Ω , and compute the
derivative of G.

2009Aug#7R. (a) Let H1 and H2 be Hilbert spaces, and let T : H1 → H2

be a continuous linear operator. Give a precise definition of the adjoint
operator T ∗.

(b) Let (a, b) ⊂ R be a (possibly infinite) open integral. If f ∈ L2(a, b),
explain what it means that the distributional derivative f ′ is also in L2(a, b).

(c) Let R+ denote the positive real axis [0,∞). Let H1(R) (respective-
ly H1(R+)) be the space of real-valued functions f ∈ L2(R) (respectively
f ∈ L2(R+)) such that the distributional derivative f ′ is also in L2(R) (re-
spectively L2(R+)). Then H1(R) and H1(R+) are Hilbert spaces with inner
product given by

〈f, g〉H1(R) =

∫
R
f(x)g(x)dx+

∫
R
f ′(x)g′(x)dx;

〈f, g〉H1(R+) =

∫
R+

f(x)g(x)dx+

∫
R+

f ′(x)g′(x)dx.

Let T : H1(R) → H1(R+) be the mapping given by restriction. Compute
explicitly the adjoint operator T ∗.


