In this note we present a recent result of Korner [3] on Salem sets.
Throughout, we shall fix 0 < o < 1 and C = (2m)!7.

We first fix some notations. Let T be the unit circle in the plane equipped
with the standard measure 7 with 7(T) = 2. A subset I C T is called an
interval if it is connected, and 7(I) is denote by |I|. If x be a finite Borel
measure on T, the Fourier transform of yu is defined by

i) = [ )

where r € Z. Here we have identified T with the interval [—m,7) in the
usual way. Note that 1(0) = p(T) and that 7(r) = 0 whenever r # 0. We
say that p is supported on a Borel set £ C T if |u|(T\E) = 0. Finally, we
equip T with the intrinsic metric, denoted by |z — y| for z,y € T.

Now consider the following metric spaces. The last one will be the space
in which we shall run the Baire category argument.

Lemma 1. (i) Let F be the space consisting of non-empty closed subset of
T, equipped with the Hausdorff distance, i.e.

dr(E,F)=sup inf |e — f| + sup inf |f — ¢|.
F(E,F) eerEF’ fl fegeeE\f |

Then (F,dr) a complete (in fact compact) metric space.
(ii) Let € be the space consisting of ordered pairs (E, i) where E € F and
 1s a finite nonnegative Borel measure supported on E such that
(1) lim |r|*2a(r) = 0.
[r|—o0

Define
de (B, p), (F,0)) = dr(E, F) + |1(0) — 5(0)| + sup 772 (r) = &(r).

Then (€,dg) is a non-empty complete metric space.
(iii) Let G be the subspace of £ consisting of pairs (E, ) such that

(2) w(I) < C|I|™

for all interval I. Then G is a non-empty closed subspace of £. In particular,
(G,dg) is a non-empty complete metric space, where dg := dg.

Proof. (i) See e.g.
http://www-math.mit.edu/phase2/UJM /voll /HAUSF.PDF.
(ii) dg is nondegenerate because /i uniquely determines u. Let (Ek, pg) be
a Cauchy sequence in &, then uy(T) = f15(0) is bounded and hence ||| is
bounded. Using Riesz representation theorem and Banach-Alaoglu theorem,
one can extract a subsequence converging weakly to a finite measure pu.
To see that p is nonnegative one tests with bump functions and uses the

(automatic) outer or inner regularity of u. To see that u is supported on the
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limiting set E one again applies test functions to make use of the Hausdorff
convergence. The rest of the verification is essentially the completeness of
sequence space ¢y applied to the sequence {|r|*/2fi(r)}.

(iii) G is non-empty because it contains (T, 7). The proof for closedness
is similar to the argument in (ii). ]

As usual in Baire category argument, we now turn to define dense open
(to be shown) subsets of (G, dg).

Definition 1. Suppose @ < v < 1 and € > 0. Define A, to be the
the subset of G consisting of pairs (F, ) such that we can find intervals
Il,-“ ,IM with

and ‘Il| e |IM| < eM~1/7.

Since the length of the intervals are bounded by strict inequality, A . is
open in G. Also, by picking a suitable smooth function with small support
one sees that A, . is non-empty. The main part of this note is devoted to
showing that A, is dense in G, i.e.

Proposition 1. A, . is open and dense in (G, dg).

Before proceeding to the proof let us draw some corollaries.
Set v = a+ % and € = % in Proposition 1, we obtain the following,

according to Baire category theorem.

Corollary 1. (2, A, is a dense G set in (G,dg).
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Note that if (E, u) € (2 4,41 1, then the lower Minkowski dimension
dim;,(E) < «, and in particular, dimg(EF) < a. On the other hand, if
w(T) # 0, then (2) implies dimy(E) > «. Since the pairs (E,p) with
#(T) = 0 form a subset of G whose complement is open and dense. We
obtain the following

Theorem 1. Quasi-all (E,u) in (G,dg) satisfy dim,,(F) = dimgy(F) = a.

In particular, pick such a pair (F, ) that is close to (T, 7), and normalize
1, we obtain

Theorem 2. Given 0 < a < 1, there exists a Borel probability measure (1 on
T supported on a compact set of Hausdorff and lower Minkowski dimension
a, such that
lim |r|*24(r) =0
[r|—o00
and
p(I) < I



for all interval I. Moreover, one can make
sup [r|*/?|iu(r)| < €
reZ

where € > 0 is any prescribed number.

Now pick (F,u) as in Theorem 1 which is close to (T, f7) where f is a
suitable smooth function with small support, normalize p, and then pass
from T to R in the usual way (see e.g. [1], p. 252), we obtain the following.

Theorem 3. Given 0 < a < 1, there exists a Borel probability measure p on
R supported on a compact set of Hausdorff and lower Minkowski dimension
«, such that

lim [¢|*/?u(§) = 0

€] =00
and
u(I) S 1
for all interval I in R.

We now turn to the proof of Proposition 1.
Given (F,pu) € G, we first approximate it by measures with smooth den-
sities. For this we use bump functions.

Lemma 2. Let K be a nonnegative smooth function on R supported in
(—m/2,m/2) such that [, K(t)dt = 1. If N is a positive integer, define
Kn(t) = NK(Nt). Regard Ky as a function defined on T, then

(i) Jp Kn(t)dt =1

(i) [Kn(r)] < (N/|r])*

(iii) | Enlloo S N
where the implicit constants depend only on K and the positive integer L.

From now on we fix such a bump function K.
Given a finite Borel measure p, its convolution with K is defined to be

K s p(t) = /T Kt — $)dus).

Note that gy = Ky * p is a smooth function, and gy (r) = Kn (r)a(r).

Lemma 3. Pairs of the form (E, frT) where f is a nonnegative smooth
function form a dense subset of G.

Proof. Given (E,pu) € G, direct checking shows that (F U supp(gn), gnT)
converges to (E,u) in G as N — oo. We remark that here we have used (1)
to show the convergence. O

Now by Lemma 3, given (F, o) € G, it can be approximated by (E, f7) € G
where f is smooth. Easy checking shows that (E, f7) can be further approx-
imated by (E, (1 —6)f7) for small § > 0. Hence the proof of Proposition 1
reduces to the following.
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Lemma 4. If f is smooth and (E, fT) € G satisfies
[ i< e oy
I

for all interval I and some 0 < § < C. Then (E, fT) can be approximated
by elements in A,

Lemma 4 will follow from the following lemma.

Lemma 5. Givenn > 0 and 8 > 0, we can find 0 < k < 0 and a nonnegative
smooth function g, with fT gn(t)dt =1 having the following properties:

(i) gy (r)| < mlr|=/2, for r #0

(ii) [; gn(t)dt < (L+n)|I|/2m, for [I| > K/2

(iii) [; gn(t)dt < m|I|*, for |I| < &

(iv) We can find intervals Iy, --- , Iny with

M
supp(gy) C |J Im
m=1

and || = --- = |Inf| < nM /7.

Proof of Lemma 4 from Lemma 5. Given (E, f7) as in Lemma 4 and € > 0,
we shall choose 7,0 in Lemma 5 small enough such that

(FU(EN supp(gn)), 277977f7) €A .

and

dg((E, fr), (F U (E Nsupp(gy)), 279, f7)) < e
where g, is the function described in Lemma 5 and F is a finite € /6-net of
E.

The fact that (FU(ENsupp(gy)), 279, f7) € G is clear except (2). To show
(2) we argue as follows. Since f is uniformly continuous, we can ensure that
|f(s)— f(t)] <mn whenever |s—t| < k&, provided 6 is small enough depending
on 1 and f. Now any interval I of length at least x can be written as the
union of a collection of disjoint intervals J with x/2 < |J| < k. Thus using
condition (ii) of Lemma 5,

[ 2t 0 - > /J 2 (£)g, (1)t
1
< ZJ:/J (T /J F(s)ds + ) 2mgy (t)dt
1
-2 [ sasn) [ 2w, 0y
1
< XJ:(M/Jf(S)dern)(Hn)\J!



-+ /J F(s)ds + (L + )| J]

= (1+1) /] F®dt -+ (1 + )1

< (1 +n)(C = )" +n(1+n)C|I|*
<

provided that 7 is small enough.
If |I| < k, condition (iii) of Lemma 5 yields

/1 2 £ (£)gy (£)dt < || f]loc2m /] ay(®)dt < | floc2mnlI]® < CII*

provided that 7 is small enough.

Denote ¢ = g,7, then condition (ii) and (iii) of Lemma 5 implies that
o(I) < |I|™ for all interval I, where the implicit constant depends only on
a. By condition (iv) of Lemma 5,

1= o(supp(gy)) < Y o(Im) S D 1 ml™ <n*M 7,
m m

which implies M — oo as n — 0. In particular, M > #F provided 7 is
small enough.

Now if n < 271/%, then nM~1/7 < €(2M)~/7. On the other hand, we
can of course find intervals Ip;iq,-- -, Iaps of length |I1] that cover F since
M > #F. Collecting these intervals together with Iy,--- , Ij; we get 2M
intervals of length |I;| < €(2M)~/7 such that

F U (ENsupp(gy)) U I,

This shows (F'U (E Nsupp(gy)), 279, f7) € Ay ..

Finally, we turn to bound dg. Since F is a €/6-net of E, it follows im-
mediately that dz(E,F U (E Nsupp(gy))) < €/3. So it remains to show
that

27, (0) — F(0)] < £/3
and

sup |r|*/%|2mg, f(r) — f(r)] < /3
rEZL
provided 7 is small enough. We only show the first one, the second one is

similar.

1£(0) = 27g, F(0)] = 1F(0) = gy (u)

UEZ

=1 gn(u)f(~

u#£0



S onlul = |ul ™
u#0
Sn<e/3

provided that 7 is sufficiently small. ([l

We now turn to the proof of Lemma 5. The following proof, inspired by
a paper of Kaufman [2], makes a clever use of the prime numbers.

Write P(N) for the set of primes p with N +1 < p < 2N. We shall need
the following (weaker) version of the prime number theorem.

Lemma 6. There exists constants 0 < A < 1 < B such that

N N
A—— < N)<B——
log N — #P(N) < log N

for all N > 2.
We combine this with a simple observation.

Lemma 7. If m > 2 and

m—1
Om = E 627rj/mv
J=1

then
b () = {m—l, if r =0 (mod m)

-1, otherwise.

For N = 2, we set ¢(N) =>_ cp(n)(p — 1) and

1
™= N 2 o
q(N)
PEP(N)
The following lemma gives the key properties of 7.

Lemma 8. Suppose N > 2, then
(i) If p,q € P(N) and p # q, then
2mu/p # 2mv/q
whenever l<u<p—1andl <v<gq-—1.
(ii) The measure Ty is a probability measure of the form
™ = ! e
YT HE(N) gm
with E(N) a finite set with the property that
le — f| > 2r N2
whenever e, f € E(N) and e # f.
(i5i) T~ (I) < |I]|/2m + 2/N for all interval I.
(iv) AN?/log N < #FE(N) < 2BN?/log N




(v) Let k be a positive integers, then
178 ()| < 4A7 kN log N
for all 1 < |r| < N*.

We are now ready to prove Lemma 5 by convolving 7 with suitable bump
functions.

Proof of Lemma 5. Consider 7y as in Lemma 8. We choose M to be the
number of points in the support of 7. Recall from Lemma 8 that
AN?/log N < M < 2BN?/log N.

Provided that N is sufficiently large, we can find an integer P with
%nM”/V <pl< %nM*W

Set g, = Kp 7y and k = 4~ IN~1. Clearly, k < 0 if N is large enough.
We show that g, satisfies the properties in Lemma 5 if NV is chosen large
enough.

It is easy to see that [g,(t)dt = 1 and that condition (iv) is satisfied.
To prove (i), we choose 3 € (a, ) and notice that for 1 < |r| < N?/8

1G(r)] = | Kp(r)||7n(r)]

< |7n(r)|

< N llogN
[7[*/2 N*/Plog(N)
Ne/B N
log(NN)
N1-a/B
< nlr|

= fr[=2

< [r|7/?

provided that N is large enough.

On the other hand, choose integer L such that L(1 — /) > 2. Then for
Ir| > N?/7,



S e
< n—L’r‘—a/2N—2/ﬁ
< plr~?

provided that N is large enough. This proves condition (i) in Lemma 5.
To prove (ii), notice that for |I| > k,

/%wﬁ:/%@M@ﬁ
I T
_/T/TKP(t—s)dm(s)XI(t)dt
_ / / Kp(t — s)xi(t)dtdra(s)
TJT
_ / / Kp()xi(t+ s)dtdry (s)
TJT
://Xj(t-i-s)dTN(s)KP(t)dt
TJT
:/ETN(I—t)KP(t)dt

< [(n1/2m + 2/N)Kp(t)d
= |IT| /21 +2/N
= |I|/27 + nK /27
<|I|/2m + w71
< (L +n)]/2m
Finally, the proof of condition (iii) splits into three parts depending on
the length of the interval I. First suppose tN~2 < |I| < k. Lemma 8 (ii)

tells us that
#(INEy) < N’|I|+1

and so
() < (N?[I|+ )M~
for all interval I. By similar argument as above,

[ antorde < 2111+ par
I

log N)(|I| + N72)
log N)|I|
)
)

AN A

log ) |1]'~*|7]°

(
(
(
(log N)k!=| 1]~

IN



= (log N)(4mp ' N~ 1|
< nI|*

provided that N is large enough.

O

If M~Y/7 < |I| < #N~2, then I covers at most one point of F(N). Hence

w(I) < Mt

and so

[ < e

I
< |7
=[]~
< (eN72)TI”
< n|I|*

provided that N is large enough.
If |I|] < M~'/7, then noticing that

lgnlloe < MUK,
we have
/[ g (B)dt < [1]]1g1]o0
<|IIM~p
< [|M-ty~ M
< 1yt

= I
< nflM*('Y*a)/’V‘[‘a
<"

provided that NV is large enough. This concludes the proof.
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