In this note we present a recent result of Körner [3] on Salem sets. Throughout, we shall fix $0<\alpha<1$ and $C=(2 \pi)^{1-\alpha}$.

We first fix some notations. Let \mathbb{T} be the unit circle in the plane equipped with the standard measure τ with $\tau(\mathbb{T})=2 \pi$. A subset $I \subset \mathbb{T}$ is called an interval if it is connected, and $\tau(I)$ is denote by $|I|$. If μ be a finite Borel measure on \mathbb{T}, the Fourier transform of μ is defined by

$$
\hat{\mu}(r)=\int_{\mathbb{T}} e^{-i r t} d \mu(t)
$$

where $r \in \mathbb{Z}$. Here we have identified \mathbb{T} with the interval $[-\pi, \pi)$ in the usual way. Note that $\hat{\mu}(0)=\mu(\mathbb{T})$ and that $\hat{\tau}(r)=0$ whenever $r \neq 0$. We say that μ is supported on a Borel set $E \subset \mathbb{T}$ if $|\mu|(\mathbb{T} \backslash E)=0$. Finally, we equip \mathbb{T} with the intrinsic metric, denoted by $|x-y|$ for $x, y \in \mathbb{T}$.

Now consider the following metric spaces. The last one will be the space in which we shall run the Baire category argument.

Lemma 1. (i) Let \mathcal{F} be the space consisting of non-empty closed subset of \mathbb{T}, equipped with the Hausdorff distance, i.e.

$$
d_{\mathcal{F}}(E, F)=\sup _{e \in E} \inf _{f \in F}|e-f|+\sup _{f \in F} \inf _{e \in E}|f-e| .
$$

Then $\left(\mathcal{F}, d_{\mathcal{F}}\right)$ a complete (in fact compact) metric space.
(ii) Let \mathcal{E} be the space consisting of ordered pairs (E, μ) where $E \in \mathcal{F}$ and μ is a finite nonnegative Borel measure supported on E such that

$$
\begin{equation*}
\lim _{|r| \rightarrow \infty}|r|^{\alpha / 2} \hat{\mu}(r)=0 \tag{1}
\end{equation*}
$$

Define

$$
d_{\mathcal{E}}((E, \mu),(F, \sigma))=d_{\mathcal{F}}(E, F)+|\hat{\mu}(0)-\hat{\sigma}(0)|+\sup _{r \in \mathbb{Z}}|r|^{\alpha / 2}|\hat{\mu}(r)-\hat{\sigma}(r)| .
$$

Then $\left(\mathcal{E}, d_{\mathcal{E}}\right)$ is a non-empty complete metric space.
(iii) Let \mathcal{G} be the subspace of \mathcal{E} consisting of pairs (E, μ) such that

$$
\begin{equation*}
\mu(I) \leq C|I|^{\alpha} \tag{2}
\end{equation*}
$$

for all interval I. Then \mathcal{G} is a non-empty closed subspace of \mathcal{E}. In particular, $\left(\mathcal{G}, d_{\mathcal{G}}\right)$ is a non-empty complete metric space, where $d_{\mathcal{G}}:=d_{\mathcal{E}}$.

Proof. (i) See e.g.
http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF.
(ii) $d_{\mathcal{E}}$ is nondegenerate because $\hat{\mu}$ uniquely determines μ. Let $\left(E_{k}, \mu_{k}\right)$ be a Cauchy sequence in \mathcal{E}, then $\mu_{k}(\mathbb{T})=\hat{\mu}_{k}(0)$ is bounded and hence $\left\|\mu_{k}\right\|$ is bounded. Using Riesz representation theorem and Banach-Alaoglu theorem, one can extract a subsequence converging weakly to a finite measure μ. To see that μ is nonnegative one tests with bump functions and uses the (automatic) outer or inner regularity of μ. To see that μ is supported on the
limiting set E one again applies test functions to make use of the Hausdorff convergence. The rest of the verification is essentially the completeness of sequence space c_{0} applied to the sequence $\left\{|r|^{\alpha / 2} \hat{\mu}(r)\right\}$.
(iii) \mathcal{G} is non-empty because it contains (\mathbb{T}, τ). The proof for closedness is similar to the argument in (ii).

As usual in Baire category argument, we now turn to define dense open (to be shown) subsets of $\left(\mathcal{G}, d_{\mathcal{G}}\right)$.

Definition 1. Suppose $\alpha<\gamma<1$ and $\epsilon>0$. Define $\mathcal{A}_{\gamma, \epsilon}$ to be the the subset of \mathcal{G} consisting of pairs (E, μ) such that we can find intervals I_{1}, \cdots, I_{M} with

$$
E \subset \bigcup_{m=1}^{M} I_{m}
$$

and $\left|I_{1}\right|=\cdots=\left|I_{M}\right|<\epsilon M^{-1 / \gamma}$.
Since the length of the intervals are bounded by strict inequality, $A_{\gamma, \epsilon}$ is open in \mathcal{G}. Also, by picking a suitable smooth function with small support one sees that $A_{\gamma, \epsilon}$ is non-empty. The main part of this note is devoted to showing that $A_{\gamma, \epsilon}$ is dense in \mathcal{G}, i.e.

Proposition 1. $A_{\gamma, \epsilon}$ is open and dense in $\left(\mathcal{G}, d_{\mathcal{G}}\right)$.
Before proceeding to the proof let us draw some corollaries.
Set $\gamma=\alpha+\frac{1}{n}$ and $\epsilon=\frac{1}{n}$ in Proposition 1, we obtain the following, according to Baire category theorem.

Corollary 1. $\bigcap_{n=1}^{\infty} A_{\alpha+\frac{1}{n}, \frac{1}{n}}$ is a dense G_{δ} set in $\left(\mathcal{G}, d_{\mathcal{G}}\right)$.
Note that if $(E, \mu) \in \bigcap_{n=1}^{\infty} A_{\alpha+\frac{1}{n}, \frac{1}{n}}$, then the lower Minkowski dimension $\operatorname{dim}_{M}(E) \leq \alpha$, and in particular, $\operatorname{dim}_{H}(E) \leq \alpha$. On the other hand, if $\mu(\mathbb{T}) \neq 0$, then (2) implies $\operatorname{dim}_{H}(E) \geq \alpha$. Since the pairs (E, μ) with $\mu(\mathbb{T})=0$ form a subset of \mathcal{G} whose complement is open and dense. We obtain the following

Theorem 1. Quasi-all (E, μ) in $\left(\mathcal{G}, d_{\mathcal{G}}\right)$ satisfy $\underline{\operatorname{dim}}_{M}(E)=\operatorname{dim}_{H}(E)=\alpha$.
In particular, pick such a pair (E, μ) that is close to (\mathbb{T}, τ), and normalize μ, we obtain

Theorem 2. Given $0<\alpha<1$, there exists a Borel probability measure μ on \mathbb{T} supported on a compact set of Hausdorff and lower Minkowski dimension α, such that

$$
\lim _{|r| \rightarrow \infty}|r|^{\alpha / 2} \hat{\mu}(r)=0
$$

and

$$
\mu(I) \leq C|I|^{\alpha}
$$

for all interval I. Moreover, one can make

$$
\sup _{r \in \mathbb{Z}}|r|^{\alpha / 2}|\hat{\mu}(r)|<\epsilon
$$

where $\epsilon>0$ is any prescribed number.
Now pick (E, μ) as in Theorem 1 which is close to $(\mathbb{T}, f \tau)$ where f is a suitable smooth function with small support, normalize μ, and then pass from \mathbb{T} to \mathbb{R} in the usual way (see e.g. [1], p. 252), we obtain the following.

Theorem 3. Given $0<\alpha<1$, there exists a Borel probability measure μ on \mathbb{R} supported on a compact set of Hausdorff and lower Minkowski dimension α, such that

$$
\lim _{|\xi| \rightarrow \infty}|\xi|^{\alpha / 2} \hat{\mu}(\xi)=0
$$

and

$$
\mu(I) \lesssim|I|^{\alpha}
$$

for all interval I in \mathbb{R}.
We now turn to the proof of Proposition 1.
Given $(E, \mu) \in \mathcal{G}$, we first approximate it by measures with smooth densities. For this we use bump functions.
Lemma 2. Let K be a nonnegative smooth function on \mathbb{R} supported in $(-\pi / 2, \pi / 2)$ such that $\int_{\mathbb{R}} K(t) d t=1$. If N is a positive integer, define $K_{N}(t)=N K(N t)$. Regard K_{N} as a function defined on \mathbb{T}, then
(i) $\int_{\mathbb{T}} K_{N}(t) d t=1$
(ii) $\left|\hat{K}_{N}(r)\right| \lesssim(N /|r|)^{L}$
(iii) $\left\|K_{N}\right\|_{\infty} \lesssim N$
where the implicit constants depend only on K and the positive integer L.
From now on we fix such a bump function K.
Given a finite Borel measure μ, its convolution with K_{N} is defined to be

$$
K_{N} * \mu(t)=\int_{\mathbb{T}} K_{N}(t-s) d \mu(s) .
$$

Note that $g_{N}=K_{N} * \mu$ is a smooth function, and $\hat{g}_{N}(r)=\hat{K}_{N}(r) \hat{\mu}(r)$.
Lemma 3. Pairs of the form $(E, f \tau)$ where f is a nonnegative smooth function form a dense subset of \mathcal{G}.

Proof. Given $(E, \mu) \in \mathcal{G}$, direct checking shows that $\left(E \cup \operatorname{supp}\left(g_{N}\right), g_{N} \tau\right)$ converges to (E, μ) in \mathcal{G} as $N \rightarrow \infty$. We remark that here we have used (1) to show the convergence.

Now by Lemma 3, given $(F, \sigma) \in \mathcal{G}$, it can be approximated by $(E, f \tau) \in \mathcal{G}$ where f is smooth. Easy checking shows that $(E, f \tau)$ can be further approximated by $(E,(1-\delta) f \tau)$ for small $\delta>0$. Hence the proof of Proposition 1 reduces to the following.

Lemma 4. If f is smooth and $(E, f \tau) \in \mathcal{G}$ satisfies

$$
\int_{I} f d t \leq(C-\delta)|I|^{\alpha}
$$

for all interval I and some $0<\delta<C$. Then $(E, f \tau)$ can be approximated by elements in $\mathcal{A}_{\gamma, \epsilon}$

Lemma 4 will follow from the following lemma.
Lemma 5. Given $\eta>0$ and $\theta>0$, we can find $0<\kappa<\theta$ and a nonnegative smooth function g_{η} with $\int_{\mathbb{T}} g_{\eta}(t) d t=1$ having the following properties:
(i) $\left|\hat{g}_{\eta}(r)\right| \leq \eta|r|^{-\alpha / 2}$, for $r \neq 0$
(ii) $\int_{I} g_{\eta}(t) d t \leq(1+\eta)|I| / 2 \pi$, for $|I| \geq \kappa / 2$
(iii) $\int_{I} g_{\eta}(t) d t \leq \eta|I|^{\alpha}$, for $|I| \leq \kappa$
(iv) We can find intervals I_{1}, \cdots, I_{M} with

$$
\operatorname{supp}\left(g_{\eta}\right) \subset \bigcup_{m=1}^{M} I_{m}
$$

and $\left|I_{1}\right|=\cdots=\left|I_{M}\right|<\eta M^{-1 / \gamma}$.
Proof of Lemma 4 from Lemma 5. Given $(E, f \tau)$ as in Lemma 4 and $\varepsilon>0$, we shall choose η, θ in Lemma 5 small enough such that

$$
\left(F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right), 2 \pi g_{\eta} f \tau\right) \in \mathcal{A}_{\gamma, \epsilon}
$$

and

$$
d_{\mathcal{G}}\left((E, f \tau),\left(F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right), 2 \pi g_{\eta} f \tau\right)\right)<\varepsilon
$$

where g_{η} is the function described in Lemma 5 and F is a finite $\varepsilon / 6$-net of E.

The fact that $\left(F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right), 2 \pi g_{\eta} f \tau\right) \in \mathcal{G}$ is clear except (2). To show (2) we argue as follows. Since f is uniformly continuous, we can ensure that $|f(s)-f(t)| \leq \eta$ whenever $|s-t| \leq \kappa$, provided θ is small enough depending on η and f. Now any interval I of length at least κ can be written as the union of a collection of disjoint intervals J with $\kappa / 2 \leq|J| \leq \kappa$. Thus using condition (ii) of Lemma 5,

$$
\begin{aligned}
\int_{I} 2 \pi f(t) g_{\eta}(t) d t & =\sum_{J} \int_{J} 2 \pi f(t) g_{\eta}(t) d t \\
& \leq \sum_{J} \int_{J}\left(\frac{1}{|J|} \int_{J} f(s) d s+\eta\right) 2 \pi g_{\eta}(t) d t \\
& =\sum_{J}\left(\frac{1}{|J|} \int_{J} f(s) d s+\eta\right) \int_{J} 2 \pi g_{\eta}(t) d t \\
& \leq \sum_{J}\left(\frac{1}{|J|} \int_{J} f(s) d s+\eta\right)(1+\eta)|J|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{J}(1+\eta) \int_{J} f(s) d s+\eta(1+\eta)|J| \\
& =(1+\eta) \int_{I} f(t) d t+\eta(1+\eta)|I| \\
& \leq(1+\eta)(C-\delta)|I|^{\alpha}+\eta(1+\eta) C|I|^{\alpha} \\
& \leq C|I|^{\alpha}
\end{aligned}
$$

provided that η is small enough.
If $|I| \leq \kappa$, condition (iii) of Lemma 5 yields

$$
\int_{I} 2 \pi f(t) g_{\eta}(t) d t \leq\|f\|_{\infty} 2 \pi \int_{I} g_{\eta}(t) d t \leq\|f\|_{\infty} 2 \pi \eta|I|^{\alpha} \leq C|I|^{\alpha}
$$

provided that η is small enough.
Denote $\sigma=g_{\eta} \tau$, then condition (ii) and (iii) of Lemma 5 implies that $\sigma(I) \lesssim|I|^{\alpha}$ for all interval I, where the implicit constant depends only on α. By condition (iv) of Lemma 5,

$$
1=\sigma\left(\operatorname{supp}\left(g_{\eta}\right)\right) \leq \sum_{m} \sigma\left(I_{m}\right) \lesssim \sum_{m}\left|I_{m}\right|^{\alpha}<\eta^{\alpha} M^{1-\frac{\alpha}{\gamma}}
$$

which implies $M \rightarrow \infty$ as $\eta \rightarrow 0$. In particular, $M \geq \# F$ provided η is small enough.

Now if $\eta<2^{-1 / \gamma} \epsilon$, then $\eta M^{-1 / \gamma}<\epsilon(2 M)^{-1 / \gamma}$. On the other hand, we can of course find intervals $I_{M+1}, \cdots, I_{2 M}$ of length $\left|I_{1}\right|$ that cover F since $M \geq \# F$. Collecting these intervals together with I_{1}, \cdots, I_{M} we get $2 M$ intervals of length $\left|I_{1}\right|<\epsilon(2 M)^{-1 / \gamma}$ such that

$$
F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right) \subset \bigcup_{m=1}^{2 M} I_{m}
$$

This shows $\left(F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right), 2 \pi g_{\eta} f \tau\right) \in \mathcal{A}_{\gamma, \epsilon}$.
Finally, we turn to bound $d_{\mathcal{G}}$. Since F is a $\varepsilon / 6$-net of E, it follows immediately that $d_{\mathcal{F}}\left(E, F \cup\left(E \cap \operatorname{supp}\left(g_{\eta}\right)\right)\right)<\varepsilon / 3$. So it remains to show that

$$
\left|\widehat{2 \pi g_{\eta} f}(0)-\hat{f}(0)\right|<\varepsilon / 3
$$

and

$$
\sup _{r \in \mathbb{Z}}|r|^{\alpha / 2}\left|\widehat{2 \pi g_{\eta} f}(r)-\hat{f}(r)\right|<\varepsilon / 3
$$

provided η is small enough. We only show the first one, the second one is similar.

$$
\begin{aligned}
\left|\hat{f}(0)-\widehat{2 \pi g_{\eta} f}(0)\right| & =\left|\hat{f}(0)-\sum_{u \in \mathbb{Z}} \hat{g}_{\eta}(u) \hat{f}(-u)\right| \\
& =\left|\sum_{u \neq 0} \hat{g}_{\eta}(u) \hat{f}(-u)\right|
\end{aligned}
$$

6

$$
\begin{aligned}
& \lesssim \sum_{u \neq 0} \eta|u|^{-\alpha / 2}|u|^{-1} \\
& \lesssim \eta<\varepsilon / 3
\end{aligned}
$$

provided that η is sufficiently small.
We now turn to the proof of Lemma 5. The following proof, inspired by a paper of Kaufman [2], makes a clever use of the prime numbers.

Write $\mathcal{P}(N)$ for the set of primes p with $N+1 \leq p \leq 2 N$. We shall need the following (weaker) version of the prime number theorem.

Lemma 6. There exists constants $0<A<1<B$ such that

$$
A \frac{N}{\log N} \leq \# \mathcal{P}(N) \leq B \frac{N}{\log N}
$$

for all $N \geq 2$.
We combine this with a simple observation.
Lemma 7. If $m \geq 2$ and

$$
\sigma_{m}=\sum_{j=1}^{m-1} \delta_{2 \pi j / m}
$$

then

$$
\hat{\sigma}_{m}(r)= \begin{cases}m-1, & \text { if } r \equiv 0(\bmod m) \\ -1, & \text { otherwise }\end{cases}
$$

For $N \geq 2$, we set $q(N)=\sum_{p \in \mathcal{P}(N)}(p-1)$ and

$$
\tau_{N}=\frac{1}{q(N)} \sum_{p \in \mathcal{P}(N)} \sigma_{p}
$$

The following lemma gives the key properties of τ_{N}.
Lemma 8. Suppose $N \geq 2$, then
(i) If $p, q \in \mathcal{P}(N)$ and $p \neq q$, then

$$
2 \pi u / p \neq 2 \pi v / q
$$

whenever $1 \leq u \leq p-1$ and $1 \leq v \leq q-1$.
(ii) The measure τ_{N} is a probability measure of the form

$$
\tau_{N}=\frac{1}{\# E(N)} \sum_{e \in E(N)} \delta_{e}
$$

with $E(N)$ a finite set with the property that

$$
|e-f| \geq 2 \pi N^{-2}
$$

whenever $e, f \in E(N)$ and $e \neq f$.
(iii) $\tau_{N}(I) \leq|I| / 2 \pi+2 / N$ for all interval I.
(iv) $A N^{2} / \log N \leq \# E(N) \leq 2 B N^{2} / \log N$
(v) Let k be a positive integers, then

$$
\left|\hat{\tau}_{N}(r)\right| \leq 4 A^{-1} k N^{-1} \log N
$$

for all $1 \leq|r| \leq N^{k}$.
We are now ready to prove Lemma 5 by convolving τ_{N} with suitable bump functions.

Proof of Lemma 5. Consider τ_{N} as in Lemma 8. We choose M to be the number of points in the support of τ_{N}. Recall from Lemma 8 that

$$
A N^{2} / \log N \leq M \leq 2 B N^{2} / \log N
$$

Provided that N is sufficiently large, we can find an integer P with

$$
\frac{1}{4} \eta M^{-1 / \gamma} \leq P^{-1} \leq \frac{1}{2} \eta M^{-1 / \gamma}
$$

Set $g_{\eta}=K_{P} * \tau_{N}$ and $\kappa=4 \pi \eta^{-1} N^{-1}$. Clearly, $\kappa<\theta$ if N is large enough. We show that g_{η} satisfies the properties in Lemma 5 if N is chosen large enough.

It is easy to see that $\int_{\mathbb{T}} g_{\eta}(t) d t=1$ and that condition (iv) is satisfied. To prove (i), we choose $\beta \in(\alpha, \gamma)$ and notice that for $1 \leq|r| \leq N^{2 / \beta}$,

$$
\begin{aligned}
\left|\hat{g}_{\eta}(r)\right| & =\left|\hat{K}_{P}(r)\right|\left|\hat{\tau}_{N}(r)\right| \\
& \leq\left|\hat{\tau}_{N}(r)\right| \\
& \lesssim N^{-1} \log N \\
& =|r|^{-\alpha / 2} \frac{|r|^{\alpha / 2}}{N^{\alpha / \beta}} \frac{N^{\alpha / \beta} \log (N)}{N} \\
& \leq|r|^{-\alpha / 2} \frac{\log (N)}{N^{1-\alpha / \beta}} \\
& \leq \eta|r|^{-\alpha / 2}
\end{aligned}
$$

provided that N is large enough.
On the other hand, choose integer L such that $L(1-\beta / \gamma) \geq 2$. Then for $|r| \geq N^{2 / \beta}$,

$$
\begin{aligned}
\left|\hat{g}_{\eta}(r)\right| & =\left|\hat{K}_{P}(r)\right|\left|\hat{\tau}_{N}(r)\right| \\
& \leq\left|\hat{K}_{P}(r)\right| \\
& \lesssim\left(\frac{P}{|r|}\right)^{L} \\
& \lesssim\left(\frac{\eta^{-1} M^{1 / \gamma}}{|r|}\right)^{L} \\
& \lesssim\left(\frac{\eta^{-1} N^{2 / \gamma}}{|r|}\right)^{L} \\
& \lesssim\left(\frac{\eta^{-1}|r|^{\beta / \gamma}}{|r|}\right)^{L}
\end{aligned}
$$

8

$$
\begin{aligned}
& =\eta^{-L}|r|^{(\beta / \gamma-1) L} \\
& \lesssim \eta^{-L}|r|^{-\alpha / 2}|r|^{-1} \\
& \lesssim \eta^{-L}|r|^{-\alpha / 2} N^{-2 / \beta} \\
& \leq \eta|r|^{-\alpha / 2}
\end{aligned}
$$

provided that N is large enough. This proves condition (i) in Lemma 5.
To prove (ii), notice that for $|I| \geq \kappa$,

$$
\begin{aligned}
\int_{I} g_{\eta}(t) d t & =\int_{\mathbb{T}} g_{\eta}(t) \chi_{I}(t) d t \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t-s) d \tau_{N}(s) \chi_{I}(t) d t \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t-s) \chi_{I}(t) d t d \tau_{N}(s) \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t) \chi_{I}(t+s) d t d \tau_{N}(s) \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}} \chi_{I}(t+s) d \tau_{N}(s) K_{P}(t) d t \\
& =\int_{\mathbb{T}} \tau_{N}(I-t) K_{P}(t) d t \\
& \leq \int_{\mathbb{T}}(|I| / 2 \pi+2 / N) K_{P}(t) d t \\
& =|I| / 2 \pi+2 / N \\
& =|I| / 2 \pi+\eta \kappa / 2 \pi \\
& \leq|I| / 2 \pi+\kappa^{-1} \\
& \leq(1+\eta)|I| / 2 \pi
\end{aligned}
$$

Finally, the proof of condition (iii) splits into three parts depending on the length of the interval I. First suppose $\pi N^{-2} \leq|I| \leq \kappa$. Lemma 8 (ii) tells us that

$$
\#\left(I \cap E_{N}\right) \leq N^{2}|I|+1
$$

and so

$$
\tau_{N}(I) \leq\left(N^{2}|I|+1\right) M^{-1}
$$

for all interval I. By similar argument as above,

$$
\begin{aligned}
\int_{I} g_{\eta}(t) d t & \lesssim\left(N^{2}|I|+1\right) M^{-1} \\
& \lesssim(\log N)\left(|I|+N^{-2}\right) \\
& \lesssim(\log N)|I| \\
& =(\log N)|I|^{1-\alpha}|I|^{\alpha} \\
& \leq(\log N) \kappa^{1-\alpha}|I|^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =(\log N)\left(4 \pi \eta^{-1} N^{-1}\right)^{1-\alpha}|I|^{\alpha} \\
& \leq \eta|I|^{\alpha}
\end{aligned}
$$

provided that N is large enough.
If $M^{-1 / \gamma} \leq|I| \leq \pi N^{-2}$, then I covers at most one point of $E(N)$. Hence

$$
\tau_{N}(I) \leq M^{-1}
$$

and so

$$
\begin{aligned}
\int_{I} g_{\eta}(t) d t & \leq M^{-1} \\
& \leq|I|^{\gamma} \\
& =|I|^{\gamma-\alpha}|I|^{\alpha} \\
& \leq\left(\pi N^{-2}\right)^{\gamma-\alpha}|I|^{\alpha} \\
& \leq \eta|I|^{\alpha}
\end{aligned}
$$

provided that N is large enough.
If $|I| \leq M^{-1 / \gamma}$, then noticing that

$$
\left\|g_{\eta}\right\|_{\infty} \leq M^{-1}\left\|K_{P}\right\|_{\infty}
$$

we have

$$
\begin{aligned}
\int_{I} g_{\eta}(t) d t & \leq|I|\left\|g_{\eta}\right\|_{\infty} \\
& \lesssim|I| M^{-1} P \\
& \lesssim|I| M^{-1} \eta^{-1} M^{1 / \gamma} \\
& \lesssim|I| \eta^{-1}|I|^{\gamma-1} \\
& =\eta^{-1}|I|^{\gamma-\alpha}|I|^{\alpha} \\
& \leq \eta^{-1} M^{-(\gamma-\alpha) / \gamma}|I|^{\alpha} \\
& \leq \eta|I|^{\alpha}
\end{aligned}
$$

provided that N is large enough. This concludes the proof.

REfERENCES

[1] J.-P. Kahane, Some Random Series of Functions. 2nd ed, 1985, Cambridge University Press, Cambridge.
[2] R. Kaufman, On a theorem of Jarnik and Besicovitch, Acta Arith. 39 (1981), 265-267.
[3] T. W. Körner, Hausdorff and Fourier dimension, Studia Math. 206 (2011), no. 1, 37-50.

