
In this note we present a recent result of Körner [3] on Salem sets.
Throughout, we shall fix 0 < α < 1 and C = (2π)1−α.

We first fix some notations. Let T be the unit circle in the plane equipped
with the standard measure τ with τ(T) = 2π. A subset I ⊂ T is called an
interval if it is connected, and τ(I) is denote by |I|. If µ be a finite Borel
measure on T, the Fourier transform of µ is defined by

µ̂(r) =

∫
T
e−irtdµ(t)

where r ∈ Z. Here we have identified T with the interval [−π, π) in the
usual way. Note that µ̂(0) = µ(T) and that τ̂(r) = 0 whenever r 6= 0. We
say that µ is supported on a Borel set E ⊂ T if |µ|(T\E) = 0. Finally, we
equip T with the intrinsic metric, denoted by |x− y| for x, y ∈ T.

Now consider the following metric spaces. The last one will be the space
in which we shall run the Baire category argument.

Lemma 1. (i) Let F be the space consisting of non-empty closed subset of
T, equipped with the Hausdorff distance, i.e.

dF (E,F ) = sup
e∈E

inf
f∈F
|e− f |+ sup

f∈F
inf
e∈E
|f − e|.

Then (F , dF) a complete (in fact compact) metric space.

(ii) Let E be the space consisting of ordered pairs (E,µ) where E ∈ F and
µ is a finite nonnegative Borel measure supported on E such that

(1) lim
|r|→∞

|r|α/2µ̂(r) = 0.

Define

dE
(
(E,µ), (F, σ)

)
= dF (E,F ) + |µ̂(0)− σ̂(0)|+ sup

r∈Z
|r|α/2|µ̂(r)− σ̂(r)|.

Then (E , dE) is a non-empty complete metric space.

(iii) Let G be the subspace of E consisting of pairs (E,µ) such that

(2) µ(I) ≤ C|I|α

for all interval I. Then G is a non-empty closed subspace of E. In particular,
(G, dG) is a non-empty complete metric space, where dG := dE .

Proof. (i) See e.g.

http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF.

(ii) dE is nondegenerate because µ̂ uniquely determines µ. Let (Ek, µk) be
a Cauchy sequence in E , then µk(T) = µ̂k(0) is bounded and hence ‖µk‖ is
bounded. Using Riesz representation theorem and Banach-Alaoglu theorem,
one can extract a subsequence converging weakly to a finite measure µ.
To see that µ is nonnegative one tests with bump functions and uses the
(automatic) outer or inner regularity of µ. To see that µ is supported on the
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limiting set E one again applies test functions to make use of the Hausdorff
convergence. The rest of the verification is essentially the completeness of
sequence space c0 applied to the sequence {|r|α/2µ̂(r)}.

(iii) G is non-empty because it contains (T, τ). The proof for closedness
is similar to the argument in (ii). �

As usual in Baire category argument, we now turn to define dense open
(to be shown) subsets of (G, dG).

Definition 1. Suppose α < γ < 1 and ε > 0. Define Aγ,ε to be the
the subset of G consisting of pairs (E,µ) such that we can find intervals
I1, · · · , IM with

E ⊂
M⋃
m=1

Im

and |I1| = · · · = |IM | < εM−1/γ .

Since the length of the intervals are bounded by strict inequality, Aγ,ε is
open in G. Also, by picking a suitable smooth function with small support
one sees that Aγ,ε is non-empty. The main part of this note is devoted to
showing that Aγ,ε is dense in G, i.e.

Proposition 1. Aγ,ε is open and dense in (G, dG).

Before proceeding to the proof let us draw some corollaries.

Set γ = α + 1
n and ε = 1

n in Proposition 1, we obtain the following,
according to Baire category theorem.

Corollary 1.
⋂∞
n=1Aα+ 1

n
, 1
n

is a dense Gδ set in (G, dG).

Note that if (E,µ) ∈
⋂∞
n=1Aα+ 1

n
, 1
n

, then the lower Minkowski dimension

dimM (E) ≤ α, and in particular, dimH(E) ≤ α. On the other hand, if
µ(T) 6= 0, then (2) implies dimH(E) ≥ α. Since the pairs (E,µ) with
µ(T) = 0 form a subset of G whose complement is open and dense. We
obtain the following

Theorem 1. Quasi-all (E,µ) in (G, dG) satisfy dimM (E) = dimH(E) = α.

In particular, pick such a pair (E,µ) that is close to (T, τ), and normalize
µ, we obtain

Theorem 2. Given 0 < α < 1, there exists a Borel probability measure µ on
T supported on a compact set of Hausdorff and lower Minkowski dimension
α, such that

lim
|r|→∞

|r|α/2µ̂(r) = 0

and

µ(I) ≤ C|I|α
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for all interval I. Moreover, one can make

sup
r∈Z
|r|α/2|µ̂(r)| < ε

where ε > 0 is any prescribed number.

Now pick (E,µ) as in Theorem 1 which is close to (T, fτ) where f is a
suitable smooth function with small support, normalize µ, and then pass
from T to R in the usual way (see e.g. [1], p. 252), we obtain the following.

Theorem 3. Given 0 < α < 1, there exists a Borel probability measure µ on
R supported on a compact set of Hausdorff and lower Minkowski dimension
α, such that

lim
|ξ|→∞

|ξ|α/2µ̂(ξ) = 0

and
µ(I) . |I|α

for all interval I in R.

We now turn to the proof of Proposition 1.

Given (E,µ) ∈ G, we first approximate it by measures with smooth den-
sities. For this we use bump functions.

Lemma 2. Let K be a nonnegative smooth function on R supported in
(−π/2, π/2) such that

∫
RK(t)dt = 1. If N is a positive integer, define

KN (t) = NK(Nt). Regard KN as a function defined on T, then

(i)
∫
TKN (t)dt = 1

(ii) |K̂N (r)| . (N/|r|)L
(iii) ‖KN‖∞ . N

where the implicit constants depend only on K and the positive integer L.

From now on we fix such a bump function K.

Given a finite Borel measure µ, its convolution with KN is defined to be

KN ∗ µ(t) =

∫
T
KN (t− s)dµ(s).

Note that gN = KN ∗ µ is a smooth function, and ĝN (r) = K̂N (r)µ̂(r).

Lemma 3. Pairs of the form (E, fτ) where f is a nonnegative smooth
function form a dense subset of G.

Proof. Given (E,µ) ∈ G, direct checking shows that (E ∪ supp(gN ), gNτ)
converges to (E,µ) in G as N →∞. We remark that here we have used (1)
to show the convergence. �

Now by Lemma 3, given (F, σ) ∈ G, it can be approximated by (E, fτ) ∈ G
where f is smooth. Easy checking shows that (E, fτ) can be further approx-
imated by (E, (1− δ)fτ) for small δ > 0. Hence the proof of Proposition 1
reduces to the following.
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Lemma 4. If f is smooth and (E, fτ) ∈ G satisfies∫
I
fdt ≤ (C − δ)|I|α

for all interval I and some 0 < δ < C. Then (E, fτ) can be approximated
by elements in Aγ,ε

Lemma 4 will follow from the following lemma.

Lemma 5. Given η > 0 and θ > 0, we can find 0 < κ < θ and a nonnegative
smooth function gη with

∫
T gη(t)dt = 1 having the following properties:

(i) |ĝη(r)| ≤ η|r|−α/2, for r 6= 0

(ii)
∫
I gη(t)dt ≤ (1 + η)|I|/2π, for |I| ≥ κ/2

(iii)
∫
I gη(t)dt ≤ η|I|

α, for |I| ≤ κ
(iv) We can find intervals I1, · · · , IM with

supp(gη) ⊂
M⋃
m=1

Im

and |I1| = · · · = |IM | < ηM−1/γ.

Proof of Lemma 4 from Lemma 5. Given (E, fτ) as in Lemma 4 and ε > 0,
we shall choose η, θ in Lemma 5 small enough such that

(F ∪ (E ∩ supp(gη)), 2πgηfτ) ∈ Aγ,ε
and

dG
(
(E, fτ), (F ∪ (E ∩ supp(gη)), 2πgηfτ)

)
< ε

where gη is the function described in Lemma 5 and F is a finite ε/6-net of
E.

The fact that (F∪(E∩supp(gη)), 2πgηfτ) ∈ G is clear except (2). To show
(2) we argue as follows. Since f is uniformly continuous, we can ensure that
|f(s)−f(t)| ≤ η whenever |s− t| ≤ κ, provided θ is small enough depending
on η and f . Now any interval I of length at least κ can be written as the
union of a collection of disjoint intervals J with κ/2 ≤ |J | ≤ κ. Thus using
condition (ii) of Lemma 5,∫

I
2πf(t)gη(t)dt =

∑
J

∫
J

2πf(t)gη(t)dt

≤
∑
J

∫
J

( 1

|J |

∫
J
f(s)ds+ η

)
2πgη(t)dt

=
∑
J

( 1

|J |

∫
J
f(s)ds+ η

) ∫
J

2πgη(t)dt

≤
∑
J

( 1

|J |

∫
J
f(s)ds+ η

)
(1 + η)|J |
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=
∑
J

(1 + η)

∫
J
f(s)ds+ η(1 + η)|J |

= (1 + η)

∫
I
f(t)dt+ η(1 + η)|I|

≤ (1 + η)(C − δ)|I|α + η(1 + η)C|I|α

≤ C|I|α

provided that η is small enough.

If |I| ≤ κ, condition (iii) of Lemma 5 yields∫
I

2πf(t)gη(t)dt ≤ ‖f‖∞2π

∫
I
gη(t)dt ≤ ‖f‖∞2πη|I|α ≤ C|I|α

provided that η is small enough.

Denote σ = gητ , then condition (ii) and (iii) of Lemma 5 implies that
σ(I) . |I|α for all interval I, where the implicit constant depends only on
α. By condition (iv) of Lemma 5,

1 = σ(supp(gη)) ≤
∑
m

σ(Im) .
∑
m

|Im|α < ηαM
1−α

γ ,

which implies M → ∞ as η → 0. In particular, M ≥ #F provided η is
small enough.

Now if η < 2−1/γε, then ηM−1/γ < ε(2M)−1/γ . On the other hand, we
can of course find intervals IM+1, · · · , I2M of length |I1| that cover F since
M ≥ #F . Collecting these intervals together with I1, · · · , IM we get 2M
intervals of length |I1| < ε(2M)−1/γ such that

F ∪ (E ∩ supp(gη)) ⊂
2M⋃
m=1

Im.

This shows (F ∪ (E ∩ supp(gη)), 2πgηfτ) ∈ Aγ,ε.
Finally, we turn to bound dG . Since F is a ε/6-net of E, it follows im-

mediately that dF (E,F ∪ (E ∩ supp(gη))) < ε/3. So it remains to show
that

|2̂πgηf(0)− f̂(0)| < ε/3

and

sup
r∈Z
|r|α/2|2̂πgηf(r)− f̂(r)| < ε/3

provided η is small enough. We only show the first one, the second one is
similar.

|f̂(0)− 2̂πgηf(0)| = |f̂(0)−
∑
u∈Z

ĝη(u)f̂(−u)|

= |
∑
u6=0

ĝη(u)f̂(−u)|
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.
∑
u6=0

η|u|−α/2|u|−1

. η < ε/3

provided that η is sufficiently small. �

We now turn to the proof of Lemma 5. The following proof, inspired by
a paper of Kaufman [2], makes a clever use of the prime numbers.

Write P(N) for the set of primes p with N + 1 ≤ p ≤ 2N . We shall need
the following (weaker) version of the prime number theorem.

Lemma 6. There exists constants 0 < A < 1 < B such that

A
N

logN
≤ #P(N) ≤ B N

logN

for all N ≥ 2.

We combine this with a simple observation.

Lemma 7. If m ≥ 2 and

σm =
m−1∑
j=1

δ2πj/m,

then

σ̂m(r) =

{
m− 1, if r ≡ 0 (mod m)

−1, otherwise.

For N ≥ 2, we set q(N) =
∑

p∈P(N)(p− 1) and

τN =
1

q(N)

∑
p∈P(N)

σp,

The following lemma gives the key properties of τN .

Lemma 8. Suppose N ≥ 2, then

(i) If p, q ∈ P(N) and p 6= q, then

2πu/p 6= 2πv/q

whenever 1 ≤ u ≤ p− 1 and 1 ≤ v ≤ q − 1.

(ii) The measure τN is a probability measure of the form

τN =
1

#E(N)

∑
e∈E(N)

δe

with E(N) a finite set with the property that

|e− f | ≥ 2πN−2

whenever e, f ∈ E(N) and e 6= f .

(iii) τN (I) ≤ |I|/2π + 2/N for all interval I.

(iv) AN2/ logN ≤ #E(N) ≤ 2BN2/ logN
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(v) Let k be a positive integers, then

|τ̂N (r)| ≤ 4A−1kN−1 logN

for all 1 ≤ |r| ≤ Nk.

We are now ready to prove Lemma 5 by convolving τN with suitable bump
functions.

Proof of Lemma 5. Consider τN as in Lemma 8. We choose M to be the
number of points in the support of τN . Recall from Lemma 8 that

AN2/ logN ≤M ≤ 2BN2/ logN.

Provided that N is sufficiently large, we can find an integer P with

1

4
ηM−1/γ ≤ P−1 ≤ 1

2
ηM−1/γ .

Set gη = KP ∗ τN and κ = 4πη−1N−1. Clearly, κ < θ if N is large enough.
We show that gη satisfies the properties in Lemma 5 if N is chosen large
enough.

It is easy to see that
∫
T gη(t)dt = 1 and that condition (iv) is satisfied.

To prove (i), we choose β ∈ (α, γ) and notice that for 1 ≤ |r| ≤ N2/β,

|ĝη(r)| = |K̂P (r)||τ̂N (r)|
≤ |τ̂N (r)|
. N−1 logN

= |r|−α/2 |r|
α/2

Nα/β

Nα/β log(N)

N

≤ |r|−α/2 log(N)

N1−α/β

≤ η|r|−α/2

provided that N is large enough.

On the other hand, choose integer L such that L(1− β/γ) ≥ 2. Then for

|r| ≥ N2/β,

|ĝη(r)| = |K̂P (r)||τ̂N (r)|

≤ |K̂P (r)|

. (
P

|r|
)L

. (
η−1M1/γ

|r|
)L

. (
η−1N2/γ

|r|
)L

. (
η−1|r|β/γ

|r|
)L
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= η−L|r|(β/γ−1)L

. η−L|r|−α/2|r|−1

. η−L|r|−α/2N−2/β

≤ η|r|−α/2

provided that N is large enough. This proves condition (i) in Lemma 5.

To prove (ii), notice that for |I| ≥ κ,∫
I
gη(t)dt =

∫
T
gη(t)χI(t)dt

=

∫
T

∫
T
KP (t− s)dτN (s)χI(t)dt

=

∫
T

∫
T
KP (t− s)χI(t)dtdτN (s)

=

∫
T

∫
T
KP (t)χI(t+ s)dtdτN (s)

=

∫
T

∫
T
χI(t+ s)dτN (s)KP (t)dt

=

∫
T
τN (I − t)KP (t)dt

≤
∫
T
(|I|/2π + 2/N)KP (t)dt

= |I|/2π + 2/N

= |I|/2π + ηκ/2π

≤ |I|/2π + κ−1

≤ (1 + η)|I|/2π

Finally, the proof of condition (iii) splits into three parts depending on
the length of the interval I. First suppose πN−2 ≤ |I| ≤ κ. Lemma 8 (ii)
tells us that

#(I ∩ EN ) ≤ N2|I|+ 1

and so

τN (I) ≤ (N2|I|+ 1)M−1

for all interval I. By similar argument as above,∫
I
gη(t)dt . (N2|I|+ 1)M−1

. (logN)(|I|+N−2)

. (logN)|I|
= (logN)|I|1−α|I|α

≤ (logN)κ1−α|I|α
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= (logN)(4πη−1N−1)1−α|I|α

≤ η|I|α

provided that N is large enough. �

If M−1/γ ≤ |I| ≤ πN−2, then I covers at most one point of E(N). Hence

τN (I) ≤M−1

and so ∫
I
gη(t)dt ≤M−1

≤ |I|γ

= |I|γ−α|I|α

≤ (πN−2)γ−α|I|α

≤ η|I|α

provided that N is large enough.

If |I| ≤M−1/γ , then noticing that

‖gη‖∞ ≤M−1‖KP ‖∞,
we have ∫

I
gη(t)dt ≤ |I|‖gη‖∞

. |I|M−1P

. |I|M−1η−1M1/γ

. |I|η−1|I|γ−1

= η−1|I|γ−α|I|α

≤ η−1M−(γ−α)/γ |I|α

≤ η|I|α

provided that N is large enough. This concludes the proof.
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