In this note we present a recent result of Körner [3] on Salem sets. Throughout, we shall fix $0 < \alpha < 1$ and $C = (2\pi)^{1-\alpha}$.

We first fix some notations. Let \mathbb{T} be the unit circle in the plane equipped with the standard measure τ with $\tau(\mathbb{T}) = 2\pi$. A subset $I \subset \mathbb{T}$ is called an interval if it is connected, and $\tau(I)$ is denote by |I|. If μ be a finite Borel measure on \mathbb{T} , the Fourier transform of μ is defined by

$$\hat{\mu}(r) = \int_{\mathbb{T}} e^{-irt} d\mu(t)$$

where $r \in \mathbb{Z}$. Here we have identified \mathbb{T} with the interval $[-\pi, \pi)$ in the usual way. Note that $\hat{\mu}(0) = \mu(\mathbb{T})$ and that $\hat{\tau}(r) = 0$ whenever $r \neq 0$. We say that μ is supported on a Borel set $E \subset \mathbb{T}$ if $|\mu|(\mathbb{T} \setminus E) = 0$. Finally, we equip \mathbb{T} with the intrinsic metric, denoted by |x - y| for $x, y \in \mathbb{T}$.

Now consider the following metric spaces. The last one will be the space in which we shall run the Baire category argument.

Lemma 1. (i) Let \mathcal{F} be the space consisting of non-empty closed subset of \mathbb{T} , equipped with the Hausdorff distance, i.e.

$$d_{\mathcal{F}}(E,F) = \sup_{e \in E} \inf_{f \in F} |e - f| + \sup_{f \in F} \inf_{e \in E} |f - e|.$$

Then $(\mathcal{F}, d_{\mathcal{F}})$ a complete (in fact compact) metric space.

(ii) Let \mathcal{E} be the space consisting of ordered pairs (E, μ) where $E \in \mathcal{F}$ and μ is a finite nonnegative Borel measure supported on E such that

(1)
$$\lim_{|r|\to\infty} |r|^{\alpha/2}\hat{\mu}(r) = 0$$

Define

$$d_{\mathcal{E}}((E,\mu),(F,\sigma)) = d_{\mathcal{F}}(E,F) + |\hat{\mu}(0) - \hat{\sigma}(0)| + \sup_{r \in \mathbb{Z}} |r|^{\alpha/2} |\hat{\mu}(r) - \hat{\sigma}(r)|.$$

Then $(\mathcal{E}, d_{\mathcal{E}})$ is a non-empty complete metric space.

(iii) Let \mathcal{G} be the subspace of \mathcal{E} consisting of pairs (E,μ) such that

(2)
$$\mu(I) \le C|I|^c$$

for all interval I. Then \mathcal{G} is a non-empty closed subspace of \mathcal{E} . In particular, $(\mathcal{G}, d_{\mathcal{G}})$ is a non-empty complete metric space, where $d_{\mathcal{G}} := d_{\mathcal{E}}$.

Proof. (i) See e.g.

http://www-math.mit.edu/phase2/UJM/vol1/HAUSF.PDF.

(ii) $d_{\mathcal{E}}$ is nondegenerate because $\hat{\mu}$ uniquely determines μ . Let (E_k, μ_k) be a Cauchy sequence in \mathcal{E} , then $\mu_k(\mathbb{T}) = \hat{\mu}_k(0)$ is bounded and hence $\|\mu_k\|$ is bounded. Using Riesz representation theorem and Banach-Alaoglu theorem, one can extract a subsequence converging weakly to a finite measure μ . To see that μ is nonnegative one tests with bump functions and uses the (automatic) outer or inner regularity of μ . To see that μ is supported on the limiting set E one again applies test functions to make use of the Hausdorff convergence. The rest of the verification is essentially the completeness of sequence space c_0 applied to the sequence $\{|r|^{\alpha/2}\hat{\mu}(r)\}$.

(iii) \mathcal{G} is non-empty because it contains (\mathbb{T}, τ) . The proof for closedness is similar to the argument in (ii).

As usual in Baire category argument, we now turn to define dense open (to be shown) subsets of $(\mathcal{G}, d_{\mathcal{G}})$.

Definition 1. Suppose $\alpha < \gamma < 1$ and $\epsilon > 0$. Define $\mathcal{A}_{\gamma,\epsilon}$ to be the the subset of \mathcal{G} consisting of pairs (E,μ) such that we can find intervals I_1, \dots, I_M with

$$E \subset \bigcup_{m=1}^{M} I_m$$

and $|I_1| = \cdots = |I_M| < \epsilon M^{-1/\gamma}$.

Since the length of the intervals are bounded by strict inequality, $A_{\gamma,\epsilon}$ is open in \mathcal{G} . Also, by picking a suitable smooth function with small support one sees that $A_{\gamma,\epsilon}$ is non-empty. The main part of this note is devoted to showing that $A_{\gamma,\epsilon}$ is dense in \mathcal{G} , i.e.

Proposition 1. $A_{\gamma,\epsilon}$ is open and dense in $(\mathcal{G}, d_{\mathcal{G}})$.

Before proceeding to the proof let us draw some corollaries.

Set $\gamma = \alpha + \frac{1}{n}$ and $\epsilon = \frac{1}{n}$ in Proposition 1, we obtain the following, according to Baire category theorem.

Corollary 1. $\bigcap_{n=1}^{\infty} A_{\alpha+\frac{1}{n},\frac{1}{n}}$ is a dense G_{δ} set in $(\mathcal{G}, d_{\mathcal{G}})$.

Note that if $(E,\mu) \in \bigcap_{n=1}^{\infty} A_{\alpha+\frac{1}{n},\frac{1}{n}}$, then the lower Minkowski dimension $\underline{\dim}_M(E) \leq \alpha$, and in particular, $\underline{\dim}_H(E) \leq \alpha$. On the other hand, if $\mu(\mathbb{T}) \neq 0$, then (2) implies $\underline{\dim}_H(E) \geq \alpha$. Since the pairs (E,μ) with $\mu(\mathbb{T}) = 0$ form a subset of \mathcal{G} whose complement is open and dense. We obtain the following

Theorem 1. Quasi-all (E, μ) in $(\mathcal{G}, d_{\mathcal{G}})$ satisfy $\underline{\dim}_{M}(E) = \dim_{H}(E) = \alpha$.

In particular, pick such a pair (E, μ) that is close to (\mathbb{T}, τ) , and normalize μ , we obtain

Theorem 2. Given $0 < \alpha < 1$, there exists a Borel probability measure μ on \mathbb{T} supported on a compact set of Hausdorff and lower Minkowski dimension α , such that

$$\lim_{|r|\to\infty} |r|^{\alpha/2} \hat{\mu}(r) = 0$$

and

$$\mu(I) \le C|I|^{\alpha}$$

for all interval I. Moreover, one can make

$$\sup_{r\in\mathbb{Z}}|r|^{\alpha/2}|\hat{\mu}(r)|<\epsilon$$

where $\epsilon > 0$ is any prescribed number.

Now pick (E, μ) as in Theorem 1 which is close to $(\mathbb{T}, f\tau)$ where f is a suitable smooth function with small support, normalize μ , and then pass from \mathbb{T} to \mathbb{R} in the usual way (see e.g. [1], p. 252), we obtain the following.

Theorem 3. Given $0 < \alpha < 1$, there exists a Borel probability measure μ on \mathbb{R} supported on a compact set of Hausdorff and lower Minkowski dimension α , such that

$$\lim_{|\xi| \to \infty} |\xi|^{\alpha/2} \hat{\mu}(\xi) = 0$$

and

$$\mu(I) \lesssim |I|^{\alpha}$$

for all interval I in \mathbb{R} .

We now turn to the proof of Proposition 1.

Given $(E, \mu) \in \mathcal{G}$, we first approximate it by measures with smooth densities. For this we use bump functions.

Lemma 2. Let K be a nonnegative smooth function on \mathbb{R} supported in $(-\pi/2, \pi/2)$ such that $\int_{\mathbb{R}} K(t)dt = 1$. If N is a positive integer, define $K_N(t) = NK(Nt)$. Regard K_N as a function defined on \mathbb{T} , then (i) $\int_{\mathbb{R}} K_N(t)dt = 1$

(i)
$$\int_{\mathbb{T}} K_N(t) dt = 1$$

(ii) $|\hat{K}_N(t)| \lesssim (N/|t|)^L$
(iii) $||K_N||_{\infty} \lesssim N$

where the implicit constants depend only on K and the positive integer L.

From now on we fix such a bump function K.

Given a finite Borel measure μ , its convolution with K_N is defined to be

$$K_N * \mu(t) = \int_{\mathbb{T}} K_N(t-s) d\mu(s).$$

Note that $g_N = K_N * \mu$ is a smooth function, and $\hat{g}_N(r) = \hat{K}_N(r)\hat{\mu}(r)$.

Lemma 3. Pairs of the form $(E, f\tau)$ where f is a nonnegative smooth function form a dense subset of \mathcal{G} .

Proof. Given $(E, \mu) \in \mathcal{G}$, direct checking shows that $(E \cup \operatorname{supp}(g_N), g_N \tau)$ converges to (E, μ) in \mathcal{G} as $N \to \infty$. We remark that here we have used (1) to show the convergence.

Now by Lemma 3, given $(F, \sigma) \in \mathcal{G}$, it can be approximated by $(E, f\tau) \in \mathcal{G}$ where f is smooth. Easy checking shows that $(E, f\tau)$ can be further approximated by $(E, (1-\delta)f\tau)$ for small $\delta > 0$. Hence the proof of Proposition 1 reduces to the following. **Lemma 4.** If f is smooth and $(E, f\tau) \in \mathcal{G}$ satisfies

$$\int_{I} f dt \le (C - \delta) |I|^{\alpha}$$

for all interval I and some $0 < \delta < C$. Then $(E, f\tau)$ can be approximated by elements in $\mathcal{A}_{\gamma,\epsilon}$

Lemma 4 will follow from the following lemma.

Lemma 5. Given $\eta > 0$ and $\theta > 0$, we can find $0 < \kappa < \theta$ and a nonnegative smooth function g_{η} with $\int_{\mathbb{T}} g_{\eta}(t) dt = 1$ having the following properties:

 $\begin{array}{l} (i) \ |\hat{g}_{\eta}(r)| \leq \eta |r|^{-\alpha/2}, \ for \ r \neq 0 \\ (ii) \ \int_{I} g_{\eta}(t) dt \leq (1+\eta) |I|/2\pi, \ for \ |I| \geq \kappa/2 \\ (iii) \ \int_{I} g_{\eta}(t) dt \leq \eta |I|^{\alpha}, \ for \ |I| \leq \kappa \\ (iv) \ We \ can \ find \ intervals \ I_{1}, \cdots, I_{M} \ with \end{array}$

$$\operatorname{supp}(g_{\eta}) \subset \bigcup_{m=1}^{M} I_{m}$$

and $|I_1| = \cdots = |I_M| < \eta M^{-1/\gamma}$.

Proof of Lemma 4 from Lemma 5. Given $(E, f\tau)$ as in Lemma 4 and $\varepsilon > 0$, we shall choose η, θ in Lemma 5 small enough such that

$$(F \cup (E \cap \operatorname{supp}(g_\eta)), 2\pi g_\eta f \tau) \in \mathcal{A}_{\gamma,\epsilon}$$

and

4

$$d_{\mathcal{G}}((E, f\tau), (F \cup (E \cap \operatorname{supp}(g_{\eta})), 2\pi g_{\eta} f\tau)) < \varepsilon$$

where g_{η} is the function described in Lemma 5 and F is a finite $\varepsilon/6$ -net of E.

The fact that $(F \cup (E \cap \operatorname{supp}(g_{\eta})), 2\pi g_{\eta} f\tau) \in \mathcal{G}$ is clear except (2). To show (2) we argue as follows. Since f is uniformly continuous, we can ensure that $|f(s) - f(t)| \leq \eta$ whenever $|s - t| \leq \kappa$, provided θ is small enough depending on η and f. Now any interval I of length at least κ can be written as the union of a collection of disjoint intervals J with $\kappa/2 \leq |J| \leq \kappa$. Thus using condition (ii) of Lemma 5,

$$\begin{split} \int_{I} 2\pi f(t)g_{\eta}(t)dt &= \sum_{J} \int_{J} 2\pi f(t)g_{\eta}(t)dt \\ &\leq \sum_{J} \int_{J} \left(\frac{1}{|J|} \int_{J} f(s)ds + \eta\right) 2\pi g_{\eta}(t)dt \\ &= \sum_{J} \left(\frac{1}{|J|} \int_{J} f(s)ds + \eta\right) \int_{J} 2\pi g_{\eta}(t)dt \\ &\leq \sum_{J} \left(\frac{1}{|J|} \int_{J} f(s)ds + \eta\right) (1+\eta)|J| \end{split}$$

$$= \sum_{J} (1+\eta) \int_{J} f(s)ds + \eta(1+\eta)|J|$$

= $(1+\eta) \int_{I} f(t)dt + \eta(1+\eta)|I|$
 $\leq (1+\eta)(C-\delta)|I|^{\alpha} + \eta(1+\eta)C|I|^{\alpha}$
 $\leq C|I|^{\alpha}$

provided that η is small enough.

If $|I| \leq \kappa$, condition (iii) of Lemma 5 yields

$$\int_{I} 2\pi f(t) g_{\eta}(t) dt \le \|f\|_{\infty} 2\pi \int_{I} g_{\eta}(t) dt \le \|f\|_{\infty} 2\pi \eta |I|^{\alpha} \le C |I|^{\alpha}$$

provided that η is small enough.

Denote $\sigma = g_{\eta}\tau$, then condition (ii) and (iii) of Lemma 5 implies that $\sigma(I) \leq |I|^{\alpha}$ for all interval I, where the implicit constant depends only on α . By condition (iv) of Lemma 5,

$$1 = \sigma(\operatorname{supp}(g_{\eta})) \le \sum_{m} \sigma(I_{m}) \lesssim \sum_{m} |I_{m}|^{\alpha} < \eta^{\alpha} M^{1 - \frac{\alpha}{\gamma}},$$

which implies $M \to \infty$ as $\eta \to 0$. In particular, $M \ge \#F$ provided η is small enough.

Now if $\eta < 2^{-1/\gamma} \epsilon$, then $\eta M^{-1/\gamma} < \epsilon (2M)^{-1/\gamma}$. On the other hand, we can of course find intervals I_{M+1}, \cdots, I_{2M} of length $|I_1|$ that cover F since $M \ge \#F$. Collecting these intervals together with I_1, \cdots, I_M we get 2M intervals of length $|I_1| < \epsilon (2M)^{-1/\gamma}$ such that

$$F \cup (E \cap \operatorname{supp}(g_{\eta})) \subset \bigcup_{m=1}^{2M} I_m.$$

This shows $(F \cup (E \cap \operatorname{supp}(g_{\eta})), 2\pi g_{\eta} f \tau) \in \mathcal{A}_{\gamma, \epsilon}.$

Finally, we turn to bound $d_{\mathcal{G}}$. Since F is a $\varepsilon/6$ -net of E, it follows immediately that $d_{\mathcal{F}}(E, F \cup (E \cap \operatorname{supp}(g_{\eta}))) < \varepsilon/3$. So it remains to show that

$$|\widehat{2\pi g_{\eta}f}(0) - \widehat{f}(0)| < \varepsilon/3$$

and

$$\sup_{r \in \mathbb{Z}} |r|^{\alpha/2} |\widehat{2\pi g_{\eta} f}(r) - \hat{f}(r)| < \varepsilon/3$$

provided η is small enough. We only show the first one, the second one is similar.

$$|\hat{f}(0) - \widehat{2\pi g_{\eta} f}(0)| = |\hat{f}(0) - \sum_{u \in \mathbb{Z}} \hat{g}_{\eta}(u) \hat{f}(-u)|$$
$$= |\sum_{u \neq 0} \hat{g}_{\eta}(u) \hat{f}(-u)|$$

$$\lesssim \sum_{u \neq 0} \eta |u|^{-\alpha/2} |u|^{-1} \\ \lesssim \eta < \varepsilon/3$$

provided that η is sufficiently small.

We now turn to the proof of Lemma 5. The following proof, inspired by a paper of Kaufman [2], makes a clever use of the prime numbers.

Write $\mathcal{P}(N)$ for the set of primes p with $N + 1 \leq p \leq 2N$. We shall need the following (weaker) version of the prime number theorem.

Lemma 6. There exists constants 0 < A < 1 < B such that

$$A\frac{N}{\log N} \le \#\mathcal{P}(N) \le B\frac{N}{\log N}$$

for all $N \geq 2$.

We combine this with a simple observation.

Lemma 7. If $m \ge 2$ and

$$\sigma_m = \sum_{j=1}^{m-1} \delta_{2\pi j/m}$$

then

 $\mathbf{6}$

$$\hat{\sigma}_m(r) = \begin{cases} m-1, & \text{if } r \equiv 0 \pmod{m} \\ -1, & \text{otherwise.} \end{cases}$$

For $N \ge 2$, we set $q(N) = \sum_{p \in \mathcal{P}(N)} (p-1)$ and $\tau_N = \frac{1}{1} \sum_{p \in \mathcal{P}(N)} \sigma_p$.

$$\tau_N \equiv \frac{1}{q(N)} \sum_{p \in \mathcal{P}(N)} \sigma_p,$$

The following lemma gives the key properties of τ_N .

Lemma 8. Suppose $N \ge 2$, then

(i) If $p, q \in \mathcal{P}(N)$ and $p \neq q$, then

$$2\pi u/p \neq 2\pi v/q$$

whenever $1 \le u \le p-1$ and $1 \le v \le q-1$.

(ii) The measure τ_N is a probability measure of the form

$$\tau_N = \frac{1}{\#E(N)} \sum_{e \in E(N)} \delta_e$$

with E(N) a finite set with the property that

$$|e - f| \ge 2\pi N^{-2}$$

whenever $e, f \in E(N)$ and $e \neq f$.

(iii) $\tau_N(I) \leq |I|/2\pi + 2/N$ for all interval I. (iv) $AN^2/\log N \leq \#E(N) \leq 2BN^2/\log N$ (v) Let k be a positive integers, then

$$|\hat{\tau}_N(r)| \le 4A^{-1}kN^{-1}\log N$$

for all $1 \leq |r| \leq N^k$.

We are now ready to prove Lemma 5 by convolving τ_N with suitable bump functions.

Proof of Lemma 5. Consider τ_N as in Lemma 8. We choose M to be the number of points in the support of τ_N . Recall from Lemma 8 that

$$AN^2/\log N \le M \le 2BN^2/\log N.$$

Provided that N is sufficiently large, we can find an integer P with

$$\frac{1}{4}\eta M^{-1/\gamma} \le P^{-1} \le \frac{1}{2}\eta M^{-1/\gamma}.$$

Set $g_{\eta} = K_P * \tau_N$ and $\kappa = 4\pi \eta^{-1} N^{-1}$. Clearly, $\kappa < \theta$ if N is large enough. We show that g_{η} satisfies the properties in Lemma 5 if N is chosen large enough.

It is easy to see that $\int_{\mathbb{T}} g_{\eta}(t) dt = 1$ and that condition (iv) is satisfied. To prove (i), we choose $\beta \in (\alpha, \gamma)$ and notice that for $1 \leq |r| \leq N^{2/\beta}$,

$$\begin{aligned} |\hat{g}_{\eta}(r)| &= |\hat{K}_{P}(r)| |\hat{\tau}_{N}(r)| \\ &\leq |\hat{\tau}_{N}(r)| \\ &\lesssim N^{-1} \log N \\ &= |r|^{-\alpha/2} \frac{|r|^{\alpha/2}}{N^{\alpha/\beta}} \frac{N^{\alpha/\beta} \log(N)}{N} \\ &\leq |r|^{-\alpha/2} \frac{\log(N)}{N^{1-\alpha/\beta}} \\ &\leq \eta |r|^{-\alpha/2} \end{aligned}$$

provided that N is large enough.

On the other hand, choose integer L such that $L(1 - \beta/\gamma) \ge 2$. Then for $|r| \ge N^{2/\beta}$,

$$\begin{aligned} \hat{g}_{\eta}(r)| &= |\hat{K}_{P}(r)||\hat{\tau}_{N}(r)| \\ &\leq |\hat{K}_{P}(r)| \\ &\lesssim (\frac{P}{|r|})^{L} \\ &\lesssim (\frac{\eta^{-1}M^{1/\gamma}}{|r|})^{L} \\ &\lesssim (\frac{\eta^{-1}N^{2/\gamma}}{|r|})^{L} \\ &\lesssim (\frac{\eta^{-1}|r|^{\beta/\gamma}}{|r|})^{L} \end{aligned}$$

$$= \eta^{-L} |r|^{(\beta/\gamma-1)L}$$

$$\lesssim \eta^{-L} |r|^{-\alpha/2} |r|^{-1}$$

$$\lesssim \eta^{-L} |r|^{-\alpha/2} N^{-2/\beta}$$

$$\leq \eta |r|^{-\alpha/2}$$

provided that N is large enough. This proves condition (i) in Lemma 5. To prove (ii), notice that for $|I| \ge \kappa$,

$$\begin{split} \int_{I} g_{\eta}(t) dt &= \int_{\mathbb{T}} g_{\eta}(t) \chi_{I}(t) dt \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t-s) d\tau_{N}(s) \chi_{I}(t) dt \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t-s) \chi_{I}(t) dt d\tau_{N}(s) \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} K_{P}(t) \chi_{I}(t+s) dt d\tau_{N}(s) \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} \chi_{I}(t+s) d\tau_{N}(s) K_{P}(t) dt \\ &= \int_{\mathbb{T}} \tau_{N}(I-t) K_{P}(t) dt \\ &\leq \int_{\mathbb{T}} (|I|/2\pi + 2/N) K_{P}(t) dt \\ &= |I|/2\pi + \eta \kappa/2\pi \\ &\leq |I|/2\pi + \kappa^{-1} \\ &\leq (1+\eta) |I|/2\pi \end{split}$$

Finally, the proof of condition (iii) splits into three parts depending on the length of the interval I. First suppose $\pi N^{-2} \leq |I| \leq \kappa$. Lemma 8 (ii) tells us that

$$#(I \cap E_N) \le N^2 |I| + 1$$

and so

$$\tau_N(I) \le (N^2|I|+1)M^{-1}$$

for all interval I. By similar argument as above,

$$\begin{split} \int_{I} g_{\eta}(t) dt &\lesssim (N^{2}|I|+1)M^{-1} \\ &\lesssim (\log N)(|I|+N^{-2}) \\ &\lesssim (\log N)|I| \\ &= (\log N)|I|^{1-\alpha}|I|^{\alpha} \\ &\leq (\log N)\kappa^{1-\alpha}|I|^{\alpha} \end{split}$$

$$= (\log N)(4\pi\eta^{-1}N^{-1})^{1-\alpha}|I|^{\alpha}$$
$$\leq \eta |I|^{\alpha}$$

provided that N is large enough.

If
$$M^{-1/\gamma} \leq |I| \leq \pi N^{-2}$$
, then I covers at most one point of $E(N)$. Hence
 $\tau_N(I) \leq M^{-1}$

and so

$$\int_{I} g_{\eta}(t) dt \leq M^{-1}$$

$$\leq |I|^{\gamma}$$

$$= |I|^{\gamma-\alpha} |I|^{\alpha}$$

$$\leq (\pi N^{-2})^{\gamma-\alpha} |I|^{\alpha}$$

$$\leq \eta |I|^{\alpha}$$

provided that N is large enough.

If $|I| \leq M^{-1/\gamma}$, then noticing that

$$\|g_\eta\|_{\infty} \le M^{-1} \|K_P\|_{\infty},$$

we have

$$\int_{I} g_{\eta}(t) dt \leq |I| ||g_{\eta}||_{\infty}$$

$$\lesssim |I| M^{-1} P$$

$$\lesssim |I| M^{-1} \eta^{-1} M^{1/\gamma}$$

$$\lesssim |I| \eta^{-1} |I|^{\gamma-1}$$

$$= \eta^{-1} |I|^{\gamma-\alpha} |I|^{\alpha}$$

$$\leq \eta^{-1} M^{-(\gamma-\alpha)/\gamma} |I|^{\alpha}$$

$$\leq \eta |I|^{\alpha}$$

provided that N is large enough. This concludes the proof.

References

- [1] J.-P. Kahane, *Some Random Series of Functions*. 2nd ed, 1985, Cambridge University Press, Cambridge.
- [2] R. Kaufman, On a theorem of Jarník and Besicovitch, Acta Arith. 39 (1981), 265–267.
- [3] T. W. Körner, Hausdorff and Fourier dimension, Studia Math. 206 (2011), no. 1, 37–50.