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In the following we shall consider only finite measure space (X,m). Without loss of
generality, we always assume m(X) = 1. All the spaces are over field K, where K can be R
or C.

Let B be a Banach space. A function ϕ : X → B is called simple if ϕ(X) is finite and
for any y ∈ ϕ(X), ϕ−1(y) is measurable. A function f : X → B is called (strongly) mea-
surable if there exists a sequence of simple functions ϕk such that ϕk(x)→ f(x) for all x in X.

Let Z := {f : X → B measurable, ∃N,m(N) = 0, s.t. f(x) = 0,∀x ∈ X − N}, define
L0
B(m) := {f : X → B measurable}/Z. When B = K, we denote L0

K(m) by L0(m). Let
fk, f ∈ L0

B(m), we say that fk → f in measure if ‖f(·) − fk(·)‖B → 0 in measure. There
exists a unique metrizable topology on L0

B(m) making L0
B(m) into a topological vector space

(TVS) s.t. fk → f if and only if fk → f in measure. Moreover, L0
B(m) is complete w.r.t.

this topology, i.e. L0
B(m) is a F -space. However, L0

B(m) is not locally convex.

A function f = (fi)
∞
i=0 : X → KN is called componentwise measurable if ∀i ∈ N, fi :

X → K is measurable. Let Z := {f : X → KNcomponentwise measurable,∃N,m(N) =
0, s.t. f(x) = 0,∀x ∈ X −N}, L0(m,KN) := {f : X → KNcomponentwise measurable}/Z,

L0(m, l∞) := {f = (fi)
∞
i=0 ∈ L0(m,KN), ‖f(x)‖l∞ = sup

i
|fi(x)| <∞, a.e.}

Let fk, f ∈ L0(m, l∞), we say that fk → f in measure if ‖f(·) − fk(·)‖l∞ → 0 in measure.
There exists a unique metrizable topology on L0(m, l∞) making L0(m, l∞) into a TVS s.t.
fk → f if and only if fk → f in measure. Moreover, L0(m, l∞) is complete w.r.t. this
topology. Note that L0

l∞(m) ⊂ L0(m, l∞) and the subspace topology coincides the topology
defined above. However, in general L0

l∞(m) 6= L0(m, l∞).

A set A is bounded in the TVS L0
B(m) (or L0(m, l∞)) if and only if there exists a function

C(·) : (0,∞)→ (0,∞), lim
λ→∞

C(λ) = 0, s.t.

m(x ∈ X : ‖f(x)‖B > λ) ≤ C(λ),∀f ∈ A

Let V be a vector space. An operator T : V → L0(m) is called sublinear if
i) T (f) ≥ 0,∀f ∈ V
ii) T (λf) = |λ|T (f),∀λ ∈ K, f ∈ V
iii) T (f + g) ≤ T (f) + T (g),∀f, g ∈ V
Note that linear does not imply sublinear according to our definition. Our definition here

is just for convenience.



An operator T : V1 → V2 is called positive homogeneous if
T (αf) = αT (f),∀α > 0, f ∈ V1

Let (Y, µ) be a measure space, V be a subspace of L0(Y, µ). An operator T : V → L0(m)
is called positive if |f | ≤ g implies |Tf | ≤ |Tg|.

Let V1, V2 be two TVSs, an operator T : V1 → V2 is called bounded if T maps every
bounded set to a bounded set. If V1 is metrizable and T is linear, then T and continuous if
and only if T is bounded.

Let Q be linear space, ‖ · ‖ : Q→ [0,∞) is called a quasi-norm if
i) ‖x‖ = 0⇒ x = 0
ii) ‖λx‖ = |λ|‖x‖,∀λ ∈ K, x ∈ Q
iii) ∃ a constant K ≥ 1, s.t. ‖x+ y‖ ≤ K(‖x‖+ ‖y‖),∀x, y ∈ Q

Let (Q, ‖ · ‖) be a quasi-normed space, then there exists a unique metrizable topology on
Q making Q into a TVS such that xk → x if and only if ‖x− xk‖ → 0. Under this topology,
{x : ‖x‖ < 1/n}, n = 1, 2, ... form a topological basis of Q; a subset E ⊂ Q is bounded if and
only if ‖E‖ = {‖x‖, x ∈ E} is bounded. Note that in general quasi-norm is not continuous,
i.e. ‖x − xk‖ → 0 may not imply ‖xk‖ → ‖x‖. If Q is complete in this topology, we call
(Q, ‖ · ‖) a quasi-Banach space. Let Q1, Q2 be two quasi-normed spaces, then a positive
homogeneous operator T : Q1 → Q2 is bounded if and only if there exists a constant C such
that ‖Tf‖Q2 ≤ C‖f‖Q1 , ∀f ∈ Q1.

Let Q be a quasi-normed space, B be a Banach space, then a positive homogeneous
operator T : Q → L0

B(m) (or L0(m, l∞)) is bounded if and only if there exists a function
C(·) : (0,∞)→ (0,∞), lim

λ→∞
C(λ) = 0, s.t.

m(x ∈ X : ‖Tf(x)‖B > λ) ≤ C(λ),∀‖f‖Q ≤ 1

If T : Q→ L0(m) is sublinear, then T is bounded if and only if T is continuous.

A bonus for the functional analytic argument above is the following, which is immediate
by applying closed graph theorem.

Theorem I (Banach Continuity Principle) : Let Q be a quasi-Banach space, Ti :
Q→ L0(m), i ∈ N, be a sequence of bounded linear operators. Let T : Q→ L0(m,KN),Tf :=
(Tif)∞i=0. If T (Q) ⊂ L0(m, l∞), i.e.

T ∗f(x) := ‖Tf(x)‖l∞ = sup
i
|Tif(x)| <∞ a.e.

then T : Q→ L0(m, l∞) is bounded, i.e. ∃C(·) : (0,∞)→ (0,∞), lim
λ→∞

C(λ) = 0, s.t.

m(x ∈ X : T ∗f(x) > λ) ≤ C(λ),∀‖f‖Q ≤ 1

Now we develop a little more language. Let 0 < p <∞, define

Lp(m) := {f ∈ L0(m), ‖f‖p = (

∫
X

|f |pdm)1/p <∞}



then (Lp(m), ‖·‖p) becomes a quasi-Banach space with quasi-norm constant 1∨(2
1
p
−1). Note

that Lp(m) (0 < p < 1) is in general not locally convex. Define

Lp,∞(m) := {f ∈ L0(m), ‖f‖p,∞ = sup
λ>0

λm(|f | > λ)1/p <∞}

then Lp,∞(m) becomes a quasi-Banach space satisfying with quasi-norm constant 2∨2
1
p . Let

w ∈ L0(m), w > 0, then w induces a measure wm on X with (wm)(A) :=
∫
A
wdm. Since

w > 0, we have L0(wm) = L0(m). Similarly we have quasi-Banach spaces Lp(wm) and
Lp,∞(wm) for 0 < p <∞, which are all contained in L0(m).

Let Q be a quasi-Banach space with quasi-norm constant K, 0 < p <∞, define

lp(Q) := {q = (qi)
∞
i=0, qi ∈ Q, ‖q‖lp(Q) = (

∞∑
i=0

‖qi‖pQ)1/p <∞}

then lp(Q) is a quasi-Banach space with quasi-norm constant [1 ∨ (2
1
p
−1)]K. Let T : Q →

L0(m) be an operator, denote

T : lp(Q)→ L0(m,KN), (fi)
∞
i=0 7→ (Tfi)

∞
i=0

Denote by lp0(Q) := {q = (qi)
∞
i=0 ∈ lp(Q), ∃N, s.t. qi = 0,∀i ≥ N} which is dense in lp(Q).

For any measurable E ⊂ X, we have a measure space (E,m|E) and the restriction oper-
ator RE : L0(m)→ L0(E,m|E), f 7→ f |E.

Let Q0 be the quasi-Banach space Lq(m) or Lq,∞(m) with 0 < q < ∞, 0 < g ∈ L0(m),
then the map Mg : Q0 → L0(m), f 7→ gf is continuous. Let Q be a another quasi-Banach
space, T0 : Q→ Q0 be continuous, then T = MgTo : Q→ L0(m) is continuous. In this case
we say that T factors through Q0. Notice that T factors through Q0 if and only if there
exists g ∈ L0(m), g > 0 s.t. MgT : Q → Q0 continuous. We can make it fancier by saying
that T is conformal to a continuous map from Q to Q0.

The aim of this note is to prove the converse, i.e. roughly, every continuous map from Q
to L0(m) is conformal to a continuous map fromQ to someQ0. For this we need some criteria.

Theorem II (Equivalence of Boundedness) : Let Q be a quasi-normed space, and
let T : Q → L0(m) be a positive homogeneous operator, 0 < q < ∞, then the following are
equivalent:

a) (conformal boundedness) gT : Q→ Lq,∞(m) and is bounded, for some 0 < g ∈ L0(m)
b) (weighted boundedness) T : Q→ Lq,∞(wm) and is bounded, for some 0 < w ∈ L0(m)
c) (almost boundedness) For any ε > 0, there exists Eε ⊂ X with m(X − Eε) < ε, such

that REεT : Q→ Lq,∞(Eε,m|Eε) and is bounded
d) (vector-valued boundedness) T : lq(Q)→ L0(m, l∞) and is bounded

Proof. c) ⇒ b): Let ε = 1
n
, n = 1, 2, .... Let En be the corresponding subset with

m(X − En) < 1
n

and Cn > 0, such that

m{x ∈ En : |T (f)| > λ} ≤ Cq
n

λq
‖f‖qQ,∀λ > 0, f ∈ Q



We may assume En ⊂ En+1 (otherwise take the union). Now define (E0 := ∅)

w :=
∞∑
n=1

1

2nCq
n
χEn−En−1

Since m(X − ∪∞n=1En) = 0, w > 0 a.e. Now ∀λ > 0, f ∈ Q,∫
{|Tf |>λ}

wdm =

∫
(En−En−1)∩{|Tf |>λ}

wdm

≤
∞∑
n=1

1

2nCq
n
m{x ∈ En : |T (f)(x)| > λ}

≤
∞∑
n=1

1

2nCq
n

Cq
n

λq
‖f‖qQ

=
1

λq
‖f‖qQ

This shows T : Q→ Lq,∞(wm) and is bounded.

b) ⇒ a): Assume T : Q→ Lq,∞(wm) and is bounded, i.e. ∃C > 0, such that∫
{|Tf |>λ}

wdm ≤ Cq

λq
‖f‖qQ,∀λ > 0, f ∈ Q

We may assume w ≤ 1 (otherwise let w = w ∧ 1). For n = 1, 2, ..., let

En = {x ∈ X :
1

n+ 1
< w(x) ≤ 1

n
}

g =
1

2n
χEn

Then g > 0. Now we have

m{g|Tf | > λ} =
∞∑
n=1

m{x ∈ En : |T (f)(x)| > 2nλ}

≤
∞∑
n=1

∫
En∩{|Tf |>2nλ}

(n+ 1)wdm

≤
∞∑
n=1

(n+ 1)

∫
{|Tf |>2nλ}

wdm

≤
∞∑
n=1

(n+ 1)
Cq

2nqλq
‖f‖qQ

= Cq
Cq

λq
‖f‖qQ

This shows gT : Q→ Lq,∞(m) and is bounded.



a) ⇒ d): We show that there exists C(·) : (0,∞)→ (0,∞), lim
λ→∞

C(λ) = 0, such that

m{x ∈ X : sup
i
|T (fi)(x)| > λ} ≤ C(λ),∀(fi)∞i=1 ∈ lq(Q),

∞∑
i=1

‖fi‖qQ ≤ 1

Assume g > 0, gT : Q→ Lq,∞(m) is bounded with constant C > 0, then

m{x ∈ X : sup
i
|T (fi)(x)| > λ}

= m{x ∈ X : sup
i
|g(x)T (fi)(x)| > g(x)λ}

≤ m{x : g(x) ≤ λ−1/2} ∩ {x ∈ X : sup
i
|g(x)T (fi)(x)| > g(x)λ}

+m{x : g(x) > λ−1/2} ∩ {x ∈ X : sup
i
|g(x)T (fi)(x)| > g(x)λ}

≤ m{x : g(x) ≤ λ−1/2}+m{x ∈ X : sup
i
|g(x)T (fi)(x)| > λ1/2}

≤ m{x : g(x) ≤ λ−1/2}+m(∪∞i=1{x ∈ X : |g(x)T (fi)(x)| > λ1/2})

≤ m{x : g(x) ≤ λ−1/2}+
∞∑
i=1

m{x ∈ X : |g(x)T (fi)(x)| > λ1/2}

≤ m{x : g(x) ≤ λ−1/2}+
∞∑
i=1

Cq

λq/2
‖fi‖qQ

≤ m{x : g(x) ≤ λ−1/2}+
Cq

λq/2

Note that C(λ) := m{x : g(x) ≤ λ−1/2}+ Cq

λq/2
satisfies the properties we want.

d)⇒ c): Fix ε > 0, we are going to find an Eε as in c). Let C(·) be the function in d) (see
the proof above), let Λ > 0 such that C(Λ) < ε. Consider F ⊂ X satisfying the following:

m(F ) > 0 and ∃f ∈ Q, ‖f‖Q ≤ 1, s.t. |T (f)(x)| > Λ

m(F )1/p
, a.e. x ∈ F

Let F0 = {F ⊂ X : F satisfies the above property} (we may assume F0 6= ∅, similarly
assume Fi 6= ∅ in the following). Choose F1 ∈ F0 such that

m(F1) >
1

2
sup
F∈F0

m(F )

Denote by f1 the associated element in Q. Let F1 = {F ∈ F0 : F ∩ F1 = ∅}. Choose
F2 ∈ F1, such that

m(F2) >
1

2
sup
F∈F1

m(F )

Denote by f2 the associated element in Q. Let F2 = {F ∈ F0 : F ∩ F1 = F ∩ F2 = ∅}, etc.
Since the Fi’s are disjoint,

∑∞
i=1 m(Fi) ≤ 1. In particular, limi→∞m(Fi) = 0. Thus by

the construction there is no F ∈ F0 such that F does not intersect any Fi. Now let

Ec = ∪∞i=1Fi



We claim that ∀f ∈ Q, ‖f‖Q ≤ 1, λ > 0, we have

m{x ∈ E : |T (f)(x)| > λ} ≤ Λq

λq

And hence RET : Q→ Lq,∞(E,m|E) and is bounded. In fact, assume

m{x ∈ E : |T (f)(x)| > λ} > Λq

λq

for some λ > 0, ‖f‖Q ≤ 1, then F := {x ∈ E : |T (f)(x)| > λ} ∈ F0. But F does not
intersect any Fi, contradiction.

It remains to show that m(Ec) < ε. Let ci = m(Fi)
1/q, then

sup
i
|T (cifi)(x)| > Λ a.e. x ∈ Ec

Moreover,
∑∞

i=1 ‖cifi‖
q
Q ≤

∑∞
i=1m(Fi) ≤ 1. Thus

m(Ec) ≤ m{x ∈ X : sup
i
|T (cifi)(x)| > Λ} ≤ C(Λ) < ε. �

We will see later that when T is positive, d) can be easily verified. In the general case,
in order to verify d) we will use the randomization trick.

The randomization trick is very useful in proving vector-valued (more precisely lp-valued)
inequalities. The idea is to express the lp norm (which is essentially a sum of norms) by the
norm of a random series (which is the norm of a sum), and hence we can make use of the
linearity of the operator (or “almost independence” of the operators).

Let (Ω,P) be a probability space. A sequence of random variables {εi}∞i=0 is called a
Rademacher sequence if

i) The εi’s are independent
ii) εi ∈ {−1, 1} with P(εi = 1) = P(εi = −1) = 1

2

Let {εi}∞i=0 be a Rademacher sequence, then {εi}∞i=0 forms an orthonormal system in
L2(Ω), thus we have an isometric embedding

l2 → L2(Ω), α = {αi}∞i=0 7→ ε · α :=
∑
i

εiαi

We call ε · α a Rademacher series (by Kolmogorov’s maximal inequality, it also converges
almost surely). What is surprising is that ε · α actually lies in Lp(Ω) for all 0 < p < ∞ (in
fact |ε · α| is exponentially integrable), and ‖ε · α‖Lp(Ω) ≈ ‖α‖l2 with the implicit constants
depending only on p, that is,

Theorem III (Khinchin′s inequality,1923) : For all 0 < p <∞, there exist constants
Ap, Bp > 0, such that

Ap‖α‖l2 ≤ ‖ε · α‖Lp(Ω) ≤ Bp‖α‖l2 ,∀α ∈ l2



Notice that ‖ε · α‖Lp(Ω) = E [|
∑

i εiαi|p]
1/p and ‖α‖l2 = [

∑
i |αi|2]

1/2
, Khinchin’s inequal-

ity reveals that, although samplewise |
∑

i εiαi| and [
∑

i |αi|2]
1/2

are not comparable since
sometimes the random signs may cause significant cancellation or blowup, on average they
are indeed comparable. From a practical point of view, Khinchin’s inequality helps us get rid
of (or conversely, obtain) the termwise absolute value signs by randomizing the the sign of αi.

Remarks:
1) Khinchin’s inequality is a special case of Marcinkiewicz-Zygmund inequality (1937)

for sum of independent random variables, and more generally, Burkholder-Davis-Gundy
inequality (1973) for martingales.

2) The best constants in the Khinchin’s inequality are obtained in U. Haagerup, The best
constants in the Khintchine inequality, Studia Math, 1981.

3) A Rademacher series of the projection operators associated with an unconditional
basis can be uniformly bounded, see, for example, D. Burkholder, Boundary value problems
and sharp inequalities for martingale transforms, Ann. Prob., 1984.

4) For more introduction to random series, see, for example, J.-P. Kahane, Some random
series of functions.

When 0 < p < q <∞,
lp ⊂ lq, Lq(Ω) ⊂ Lp(Ω)

So there exist constants Cp, Dp > 0, such that

‖ε · α‖Lp(Ω) ≤ Cp‖α‖lp ,∀α ∈ lp, 0 < p ≤ 2

‖α‖lp ≤ Dp‖ε · α‖Lp(Ω),∀α ∈ l2, 2 ≤ p <∞

Moreover, we have

P (ω : ‖α‖l∞ ≤ |ε · α|) ≥
1

2
, ∀α ∈ l2

If we consider a Rademacher series of functions instead of scalars, then by Khinchin’s
inequality we obtain the following:

Theorem IV : Let 0 < p < ∞, q = p ∧ 2, (Y, ν) be an arbitrary measure space, then
there exists a constant Ep > 0, such that∥∥‖ε · f‖Lp(ν)

∥∥
Lq(Ω)

≤ Ep‖f‖lq(Lp(ν)),∀f ∈ lq0(Lp(ν))



Proof. If p ≤ 2, then q = p,

LHSp =

∫
Ω

∫
Y

|
∑
i

εi(ω)fi(y)|pν(dy)P(dω)

=

∫
Y

∫
Ω

|
∑
i

εi(ω)fi(y)|pP(dω)ν(dy)

≤
∫
Y

Cp
p

∑
i

|fi(y)|pν(dy)

≤ Cp
p

∑
i

∫
Y

|fi(y)|pν(dy)

= Cp
pRHSp.

If p ≥ 2, then q = 2,

LHS2 =

∫
Ω

[

∫
Y

|
∑
i

εi(ω)fi(y)|pν(dy)]2/pP(dω)

≤ [

∫
Ω

∫
Y

|
∑
i

εi(ω)fi(y)|pν(dy)P(dω)]2/p

≤ [

∫
Y

∫
Ω

|
∑
i

εi(ω)fi(y)|pP(dω)ν(dy)]2/p

≤ [

∫
Y

Bp
p(
∑
i

|fi(y)|2)p/2ν(dy)]2/p

= B2
p [

∫
Y

(
∑
i

|fi(y)|2)p/2ν(dy)]2/p

≤ B2
p

∑
i

[

∫
Y

|fi(x)|pν(dy)]2/p

= B2
pRHS2. �

Now we can verify d) in Theorem II to obtain the following:

Theorem V (Nikishin′s Factorization Theorem,1970) : Let (Y, ν) be an arbitrary
measure space, 0 < p < ∞, T : Lp(Y, ν) → L0(m) be a continuous linear or sublinear
operator, then there exists 0 < w ∈ L0(m), such that

T : Lp(Y, ν)→ Lq,∞(wm)

and is bounded, where q = p ∧ 2. Moreover, if T is positive, then we can take q = p.

Proof. By Theorem II, it suffices to show that ∃C(·) : (0,∞) → (0,∞), lim
λ→∞

C(λ) = 0,

such that

m{x ∈ X : sup
i
|T (fi)(x)| > λ} ≤ C(λ),∀(fi)∞i=1 ∈ l

q
0(Lp(ν)),

∑
i

‖fi‖qLp(ν) ≤ 1



Note that we change lp into lp0 here, which can be justified easily using limiting argument.
Since T : Lp(Y, µ)→ L0(m) is bounded, there exists c(·) : (0,∞)→ (0,∞), lim

λ→∞
c(λ) = 0,

such that
m{x ∈ X : |T (f)(x)| > λ} ≤ c(λ),∀f ∈ Lp(ν), ‖f‖Lp(ν) ≤ 1

If T is positive, let q = p. Define F := (
∑

i |fi|p)1/p, then ‖F‖Lp(ν) ≤ 1 and |fi| ≤ F, ∀i.
Since T is positive, |Tfi| ≤ |TF |,∀i. Thus

m{x ∈ X : sup
i
|T (fi)(x)| > λ} ≤ m{x ∈ X : |T (F )(x)| > λ} ≤ c(λ)

In the general case, let q = p ∧ 2. Let {εi}∞i=1 be a Rademacher sequence. Fix λ > 0 and
i, let ε′j = (−1)δijεj, then a.e. x, we have for all ω,

|T (fi)(x)| = |T (εi(ω)fi)(x)|

=
1

2
|T (2εi(ω)fi)(x)|

=
1

2
|T (
∑
j

εj(ω)fj −
∑
j

ε′j(ω)fj)(x)|

≤ 1

2
|T (
∑
j

εj(ω)fj)(x)|+ 1

2
|T (
∑
j

ε′j(ω)fj)(x)|

If |T (fi)(x)| > λ, then Ω = {ω : |T (
∑

j εj(ω)fj)(x)| > λ} ∪ {ω : |T (
∑

j ε
′
j(ω)fj)(x)| > λ}.

Hence
1 ≤ P{ω : |T (

∑
j

εj(ω)fj)(x)| > λ}+ P{ω : |T (
∑
j

ε′j(ω)fj)(x)| > λ}

Since
P{ω : |T (

∑
j

εj(ω)fj)(x)| > λ} = P{ω : |T (
∑
j

ε′j(ω)fj)(x)| > λ}

We get

P{ω : |T (
∑
j

εj(ω)fj)(x)| > λ} ≥ 1

2

Hence for a.e. x,

χ{x:|T (fi)(x)|>λ} ≤ 2P{ω : |T (
∑
j

εj(ω)fj)(x)| > λ}

This holds for every i, so for a.e. x,

χ{x:supi |T (fi)(x)|>λ} ≤ 2P{ω : |T (
∑
j

εj(ω)fj)(x)| > λ}



Integrating over x, we get

m{x : sup
i
|T (fi)(x)| > λ} ≤ 2

∫
X

∫
Ω

χ{|T (
∑
j εj(ω)fj)(x)|>λ}(ω, x)P(dω)m(dx)

= 2

∫
Ω

m{x : |T (
∑
j

εj(ω)fj)(x)| > λ}P(dω)

≤ 2P{ω : ‖
∑
j

εj(ω)fj‖Lp(ν) > λ1/2}

+ 2

∫
{‖

∑
j εjfj‖Lp(ν)≤λ1/2}

m{x : |T (

∑
j εj(ω)fj

λ1/2
)(x)| > λ1/2}P(dω)

≤ 2

λq/2

∫
Ω

‖
∑
j

εj(ω)fj‖qLp(ν)P(dω) + 2c(λ1/2)

≤
2Eq

p

λq/2

∑
j

‖fj‖qLp(ν) + 2c(λ1/2)

≤
2Eq

p

λq/2
+ 2c(λ1/2). �

By averaging the conformality, we can now obtain Stein’s maximal principle in the case
of compact groups.

Let (G, τ) be a topological group. G is called a compact group if G is compact and
Hausdorff with respect to τ . In the following we always assume that G is a compact group.

A finite Borel measure m on G is called a Radon measure if m(A) = infU⊃Am(U) for all
Borel set A, where U is taken over all the open sets containing A. A nonzero Radon measure
m on G is called a left Haar measure if m(xA) = m(A),∀A, x ∈ G. If a left Haar measure
is also right invariant, we call it a Haar measure. Left Haar measure always exists and is
unique up to a positive multiple. In the following we assume m(G) = 1.

Note that the outer regularity assumption here automatically implies inner regularity,
and when the topology of G is second countable, any finite Borel measure is automatically
a Radon measure. Note also that by uniqueness, any left Haar measure is automatically a
Haar measure.

Let x ∈ G, x acts on L0(m) by xf(·) := f(x−1·). A subspace V of L0(m) is called
translation invariant if V is invariant under the action of G. Let V be translation invariant,
T : V → L0(m) is called translation invariant if T commutes with the action of G. Note
that Lp(m) and Lp,∞(m) are translation invariant, for all 0 < p <∞.

Theorem VI (Stein′s Maximal Principle,1961) : Let G be a second countable com-
pact group with Haar measure m, let 0 < p < ∞, T : Lp(m) → L0(m) be a continuous,
linear (or sublinear), translation invariant operator, then

T : Lp(m)→ Lq,∞(m)



and is bounded, where q = p ∧ 2. Moreover, when T is positive we can take q = p.

Proof. By Theorem V, there exists w > 0 such that T : Lp(m) → Lq,∞(wm) and is
bounded, i.e., there exists a constant C > 0, such that∫

{|T (f)(·)|>λ}
w(x)m(dx) ≤ Cq

λq
‖f‖qp,∀λ > 0, f ∈ Lp(m)

Now fix any y ∈ G. We show that w(y·) provides the same estimate. In fact,∫
{|T (f)(·)|>λ}

w(yx)m(dx) =

∫
G

χ{|T (f)(·)|>λ}(x)w(yx)m(dx)

=

∫
G

χ{|T (f)(·)|>λ}(y
−1x)w(x)m(dx)

=

∫
G

χ{|T (f)(y−1·)|>λ}(x)w(x)m(dx)

=

∫
G

χ{|T (yf)(·)|>λ}(x)w(x)m(dx)

≤ Cq

λq
‖yf‖qp =

Cq

λq
‖f‖qp

Integrating over y, we get∫
G

∫
G

χ{|T (f)(·)|>λ}(x)w(yx)m(dx)m(dy) =

∫
G

χ{|T (f)(·)|>λ}(x)(

∫
G

w(yx)m(dy))m(dx)

=

∫
G

χ{|T (f)(·)|>λ}(x)(

∫
G

w(y)m(dy))m(dx)

= a

∫
G

χ{|T (f)(·)|>λ}(x)m(dx)

≤ Cq

λq
‖f‖qp

Here a =
∫
G
w(y)m(dy) > 0. The last inequality shows

m{|T (f)(·)| > λ} ≤ Cq

aλq
‖f‖qp. �

Remark: Here we assume that G is second countable in order to guarantee the change of
order of integration. In fact it is still legitimate to do so in the general case, see, for example,
Donald Cohn, Measure Theory (Theorem 7.6.7).
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