
1 Salem-Bluhm’s construction of Salem sets

after R. Salem [1] and C. Bluhm [2]
A summary written by Xianghong Chen

Abstract

Given α ∈ (0, 1), we construct a random Cantor set whose Fourier
and Hausdorff dimensions equal α almost surely.

1.1 Introduction

Recall that in the construction of the standard 1
3

Cantor set there are three
ingredients: the dissection number 2, the dissection ratio 1

3
and the positions

of the subintervals 0 and 2
3

(which we will call translations).
Given α ∈ (0, 1), we are interested in constructing a Cantor-type set

whose Fourier dimension (see below for definition) and Hausdorff dimension
are both equal to α. Such sets are called Salem sets and were first constructed
by Salem [1]. They are special in the sense that they close the gap between
the Fourier and Hausdorff dimensions (it is a general fact that the former
can not exceed the latter).

Salem achieved this by randomizing the dissection ratios and picking in-
commensurable translations in the construction of Cantor set. On the other
hand one can also instead randomize the translations in order to obtain Salem
sets. Both approaches increase the dissection number at each step in order
to make up for the ε-loss of decay in the case without such increments. We
will follow the second approach which was introduced by Bluhm [2].

In what follows, we will restrict ourselves to R1. All measures are defined
on Borel σ-algebra. The Fourier transform of a finite measure µ is defined
by µ̂(ξ) =

∫
eiξtµ(dt).

1.2 The main result

Theorem 1. Given α ∈ (0, 1), there exists a compact set K ⊂ [0, 1] and a
probability measure µ supported on K, such that
(i) K has Hausdorff dimension α
(ii) for all β < α, µ̂(ξ) = O(|ξ|−β/2) as |ξ| → ∞
(iii) µ(I) . |I|α for all interval I.
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1.3 The set

In fact we will construct a class of K most of which will have the properties
stated in the theorem.

The construction will start with the nominal second step. In theN -th step
of the construction, the dissection number will be precisly N , the dissection
ratio will be denoted by θN , the translations by XN,j, where j = 1, · · · , N .

More precisely, for N ∈ N, N ≥ 2, let θN = N−
1
α . Notice that

N−1 − θN = N−1(1−N−(
1
α
−1)) > cαN

−1.

Here we put cα = [1− 2−(
1
α
−1)]/3. Hence cα gives a uniform lower bound for

the portion of the gap that an interval of length θN can not fill in an interval
of length N−1.

For each N , pick XN,j ∈ [ j−1
N

+ cα
N
, j−1
N

+ 2cα
N

], j = 1, · · · , N . Then we can
correspondingly “dissect” [0, 1] into N disjoint intervals [XN,j, XN,j + θN ].

Now start with N = 2, we “dissect” [0, 1] into two intervals [X2,j2 , X2,j2 +
θ2], j2 = 1, 2. Then perform the dissection with N = 3 to each [X2,j2 , X2,j2 +
θ2], we get six intervals [X2,j2 + θ2X3,j3 , X2,j2 + θ2X3,j3 + θ2θ3], j2 = 1, 2, j3 =
1, 2, 3. Continue the procedure, after the N -th step, we get 2 ·3 · · ·N disjoint
closed intervals of the form

[X2,j2 + · · ·+ θ2 . . . θN−1XN,jN , X2,j2 + · · ·+ θ2 . . . θN−1XN,jN + θ2 . . . θN−1θN ].
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Denote by KN the union of these intervals and set KX = ∩NKN , where
the index

X = (XN,jN ) N=2,3,···
jN=1,··· ,N

Then KX is a compact set.

1.4 The measure

Equip KN with the uniform probability measure µN and let FN be its dis-
tribution function. Since FN is continuous and ‖FN − FN+1‖∞ ≤ (N !)−1,
FN converges uniformly to a continuous distribution function F . Denote
µX = dF , the probability measure corresponding to F , then µX(KX) = 1.

1.5 The Fourier transform

Since µN converges weakly to µX , in particular, µ̂N(ξ) → µ̂X(ξ), ∀ξ. Notice
that for ξ 6= 0,

µ̂N(ξ) =
eiξθ2···θN − 1

iξθ2 · · · θN
1

N · · · 2
∑

j2,··· ,jN

eiξ(X2,j2
+···+θ2···θN−1XN,jN )

=
eiξθ2···θN − 1

iξθ2 · · · θN

N∏
k=2

(
1

k

k∑
jk=1

eiξθ2···θk−1Xk,jk )

Let N →∞ we get

µ̂X(ξ) =
∞∏
k=2

(
1

k

k∑
jk=1

eiξθ2···θk−1Xk,jk ),∀ξ.

1.6 Randomization

Now we randomize X such that {XN,jN , N = 2, 3, · · · , jN = 1, · · · , N} are
independent and eachXN,jN is uniformly distributed on [ jN−1

N
+ cα

N
, jN−1

N
+ 2cα

N
].

In what follows we suppress the subscript X.

1.7 From average decay to deterministic decay

It now suffices prove the Fourier decay estimate in the average sense. Pre-
cisely, for any q,m ∈ N, q,m ≥ 1, we will show that for some constant
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C = C(α,m, q),

E[|µ̂(ξ)|2q] ≤ |ξ|−(1−
1
m
)αq,∀|ξ| ≥ C.

Assuming this is proven, we can choose q > 2mα−1 and let ξ = n ∈
Z, |n| ≥ C in the above inequality, then

E[|n|(1−
2
m
)αq|µ̂(n)|2q] ≤ |n|−

1
m
αq

Summing over n, we get

E[
∑
|n|≥C

|n|(1−
2
m
)αq|µ̂(n)|2q] ≤

∑
|n|≥1

|n|−2 <∞

Hence
µ̂(n) = O(|n|−(1−

2
m
)α
2 ), a.s.

In order to pass from the integers to the reals, notice the following

Lemma 2 (cf. [3] p.252). Let µ be a probability measure supported on [0, 1]
and β > 0 such that µ̂(n) = O(|n|−β), then µ̂(ξ) = O(|ξ|−β).

Applying this lemma we see that almost surely we have

µ̂(ξ) = O(|ξ|−(1−
2
m
)α
2 ),∀m.

1.8 The key estimate

To prove the average decay estimate we first estimate

E[|1
k

k∑
j=1

eiηXk,j |2q] =
1

k2q
E[(

k∑
j1,··· ,jq=1

eiη(Xk,j1+···+Xk,jq ))(
k∑

i1,··· ,iq=1

e−iη(Xk,i1+···+Xk,iq ))]

=
1

k2q
E[

k∑
j1,··· ,jq=1

∑
{i1,··· ,iq}

={j1,··· ,jq}

1] +
1

k2q
E[

∑
n1,··· ,nk∈Z

(n1,··· ,nk)6=0

eiη(n1Xk,1+···+nkXk,k)]

≤ q!

kq
+ sup

j=1,··· ,k
n∈Z,n6=0

|E[eiηnXk,j ]|

≤ qq

kq
+ 2c−1α k|η|−1
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1.9 Proof of the average decay

Thus, if 2c−1α k|η|−1 = 2c−1α k|ξθ2 · · · θk−1|−1 ≤ qqk−q for k = 2, · · · , N , then

E[|µ̂(ξ)|2q] ≤ E[
N∏
k=2

|1
k

k∑
jk=1

eiξθ2···θk−1Xk,jk |2q]

=
N∏
k=2

E[|1
k

k∑
jk=1

eiξθ2···θk−1Xk,jk |2q]

≤
N∏
k=2

2qq

kq
≤ 2NqqN

(N !)q
=

[
(2

1
q q)N

N !

]q

The above condition holds if and only if it holds for N , or equivalently

2c−1α q−qN q+1[(N − 1)!]
1
α ≤ |ξ|

Let N = N(ξ) be maximal such that the inequality is satisfied, then N(ξ)
is well defined for large |ξ| and is increasing in |ξ| with limit ∞ as |ξ| → ∞.
Moreover, due to maximality we have the opposite inequality for N+1. Raise
each term to the α-th power we get

cα,qN
αq+α(N − 1)! ≤ |ξ|α ≤ cα,q(N + 1)αq+αN !

where cα,q = (2c−1α q−q)α. Hence,

(2
1
q q)N

N !
≤ cα,q(N + 1)αq+α|ξ|−α(2

1
q q)N

Notice that for N large enough (depending on α,m, q) we have

(N + 1)αq+α, (2
1
q q)N ≤ [(N − 1)!]

1
2m

Hence for |ξ| large enough (depending on α,m, q),
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E[|µ̂(ξ)|2q]
1
q ≤ (2

1
q q)N

N !

≤ cα,q|ξ|−α(N + 1)αq+α(2
1
q q)N

≤ cα,q|ξ|−α[(N − 1)!]
1
m

≤ cα,q|ξ|−αc
− 1
m

α,q |ξ|
α
m

= cα,m,q|ξ|−(1−
1
m
)α

Since m can be arbitrarily large, one can rid of the constant by choosing
larger |ξ|. Raise both sides to the power q, we get for some C = C(α,m, q)

E[|µ̂(ξ)|2q] ≤ |ξ|−(1−
1
m
)αq,∀|ξ| ≥ C.

1.10 The dimensions

Let K be a compact set in R1, define the Fourier dimension of K by

dimF (K) = sup{β ∈ [0, 1] : ∃µ ∈ P(K), s.t. µ̂(ξ) = O(|ξ|−β/2)}

where P(K) denotes the space of probability measures on K.

Lemma 3 (cf. [3] p.133). For any compact set K in R1, dimF (K) ≤ dimH(K).

Here dimH(K) denotes the Hausdorff dimension of K. Finally, one can
show that in the above construction, for anyK = KX and µ = µX , dimH(K) =
α and µ(I) . |I|α for all interval I.
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