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Fourier Transform of Finite Measures

Define the Fourier transform of a probability measure 1 on R?
(e = [ @ du(x). Ve € B
RA

When 4 is absolutely continuous with respect to the Lebesgue
measure,

) =70 = [ e fx)ax

Rd
where f is an integrable function such that x = fdx.

Question: Behavior of ji(¢) as || — o0?



Fourier Decay: Absolutely Continuous Measures

Riemann-Lebesgue Lemma: If f € L', then #(¢) = o(1).

This follows from the fact that when f = x5 1),
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Ran(©) = [ eax= ST~ o)

Question: Rate of decay of #(¢)?

Fact: For any 0 < a < 1, there exists compact set K such that

Xk(§) # O(l¢]™).

Fact: When f is continuous, the rate of decay of f(¢) is closely
related to the smoothness of f.



Fourier Decay: Singular Measures

What happens if u is singular?
The simplest case is i1 = 4, the Dirac measure at a,
) = [ o dsa— e
which does not vanish at co. So the R-L lemma does not hold.
The next simplest case is ;1 = p1da, + P20a,,

(€)= pre™® + ppet®t

If a1 and a, are commensurable, then /i(&) is periodic, so again
there is no decay.



Fourier Decay: Singular Measures

If a4 and a, are incommensurable, say a; = 1, a, = V2, then

2k iv/2 2k iv2 21k

i(27k) = pye + po€ = py + poe

But e/V2 27k can approximate any point on the circle as k — oo,
so f1(£) has no decay.

Question: Does there exist u supported on a countable set, i.e.
1= Y, Pxda,, sSuch that its Fourier transform

(&) = 3 prei®
k

has decay at co?



Fourier Decay: Singular Measures

The answer is No. This can be seen from either of the following.

Wiener's Theorem:
.
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Jim 57 | Ia©)Pde = Z u(x)?

If (&) = o(1), then LHS= 0. Conversely, if 1 has no point
mass, then its Fourier transform decays in the average sense.

Theorem: If a compact set K carries a measure p with

(&) = O(|¢|~*) for some « > 0, then there exists N such that
the N-fold arithmetic sum K + - - - + K contains an interior point.
In particular, K generates R.



Fourier Decay: Cantor Set

Question: Does the converse of the above theorems hold? i.e.
If the set A generates R and carries a measure p that charges
no point, dose i(¢) = o(1) necessarily hold?

The answer is No. A counterexample is given by the standard %
Cantor set C. Notice that C + C = [0, 2] and the Cantor

function ¢ is continuous.




Fourier Decay: Cantor Set
What is dv)(€)?

One nice way to think of C and u = dv is the so-called Bernoulli
convolution. For convenience we translate the Cantor set so
that it is centered at 0. Let {ex, k > 1} be an i.i.d. sequence
with P(ex = —1) = P(ex = 1) = }. Set random variable
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By the ternary expansion of points in Cantor set, the distribution
of X coincides the Cantor measure u. Hence
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Fourier Decay: Cantor Set

A(€) = E[6X] = E[e/ x5

— [ Ele+
k
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= [ [ cos(%)
B

A(3"2r) = [H cos(—— ][H cos(=-)] = a(2r) #0

So the Cantor measure has no Fourier decay.



Fourier Decay: 6-Cantor Set

Similarly, for 0 < 0 < % if we define random variable

Y, = i P
k=1

Then Xy induces the uniform distribution 1y on the #-Cantor set
Cy with dissection ratio # and

= ﬁ cos(6k¢)
k=1

When 6§ = %,C% =[-1,1] and

H cos( ) = %) = o(le )

l\)\



Fourier Decay: 6-Cantor Set

When 6 < % it turns out that the asymptotic behavior of fiy(¢) is
determined by the number-theoretic properties of 6.

Erdds-Salem-Zygmund Theorem: TFAE,
(i) fig(€) # 0(1)

(if) For any u supported on Cy, (&) # o(1)
(iii) o' is @ PV number

(iv) Cy is a set of uniqueness

A (Pisot-Vijayaraghavan) PV number is an algebraic number
great than 1 whose conjugates are all inside the unit disc.

A set E is called a set of uniqueness if a Fourier series
converges to 0 outside E, then all the Fourier coefficients are 0.



Fourier Decay: 6-Cantor Set

To see how the number-theoretic condition (iii) comes in, notice
that by the same argument, for any \ # 0,

lim pg(A0~"2m) = [kli[1 cos(A0 2r)]ng(A2r)

Denote by ||t|| the distance from t to its nearest integer, then

Hcos()\e‘k&r) = Hcos(H/\Q |27) ~ H (1 — 2sin?(J]A60 || 7))
= k1

k=1
~ Y I
k=1

Convergence of the last series characterizes ' as a PV
number.



Salem Sets: Definition
Question: Rate of decay of jig(§)?

Theorem (Frostman): If K ¢ R is an a-dimensional compact
set with o < d, and p is supported on K such that
|A(€)P = O(|¢]~7), then 5 < a.

Here the square can be understood via Plancherel theorem. If
B > d, then fi € L2(RY9) which contradicts the fact that 1 is
singular.

The Fourier dimension of K is defined by

dime(K) = sup{8 < d: 3us.t. |a(€)? = O(¢| )}

By the above theorem dimg(K) < dimy(K). When the equality
holds, K is called a Salem set.



Examples: Non-Salem Sets

Example of non-Salem set in R?: Let K = [0, 1] C R2, then for
any . supported on K,

(6, &) = / e +0g,(xy) = (1)

(0,1]

So dimg(K) = 0 < dimy(K) = 1. (This can also be seen from
the fact that K generates R).

Example of non-Salem setin R': If 6~ is a PV number, then
dime(Cp) = 0 < dimy(Cy) = log,(1/2).



Examples: Salem Sets

0-dimensional Salem sets: All the 0-dimensional sets are
Salem sets since dimg(K) < dimy(K).

d-dimensional Salem sets: Any open set in RY is a Salem set
since we can always choose a bump function supported in it. Is
every set of positive measure a Salem set?

(d-1)-dimensional Salem sets: Let K = S9! ¢ RY, then

a(g) = O(|§]‘d2;1). So dimg(K) = dimy(K) = d — 1. Note that
this rate of decay can never be improved by choosing different
measure. (Note also that S9—1 + S9-1 = B(0,2).)



Examples: 6-Cantor Set

Return to the question. We have known that when #~1 is not a
PV number, [ig(§) = o(1). What is its rate of decay?

Fact: There exists 6 (can be arbitrarily small) such that
f19(€) = o(1) but fig(&) # O(|¢|~7?) for any 3 > 0. However, such
6 constitute a set of fractional dimension.

Question: Does there exist 8 such that such that Cy is a Salem
set?

No.



Salem’s Construction

Question (Beurling asked Salem): Given a € (0, 1), does there
exists Salem set of dimension «?

Salem’s construction: Cantor set with randomized dissection
ratios, (deterministic) incommensurable translations, and
increasing dissection numbers.

Bluhm’s variant: Cantor set with randomized translations and
increasing dissection numbers.

6,=1

8,=(1/2)"

X
8.=(1/3)""

0,=(1/4)"" enmmm - ——— -— - - s -



Kahane’s Salem Set

Kahane’s Salem set: If 2a < d and K C R is of dimension «,
then the image of K under the d-dimensional Brownian motion
is a.s. a 2a-dimensional Salem set.




Kaufman’s Salem Set

The first deterministic Salem set was found by Kaufman.

Kaufman’s Salem set: For a > 0, let E(«) be the set of real
numbers x such that ||nx|| < n~'= for infinitely many n, where
|It|| denotes the distance from t to the nearest integer. Then
E(a) is a Salem set of dimension 52

Note that the above condition is the same as
a
x—|<q @
| q\

for infinitely many rationals g.



Salem-Bluhm’s Construction

1
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Where 0 < ¢, < 1 —2-a+1 s fixed. As long as

O<X< N

N 7./ - 1
we get N disjoint intervals.




Salem-Bluhm’s Construction

1
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For each N, fix (Xn 1, -+ , Xy ) With
Ca .
OS)(NJS ij: 17 7N
Start with interval [0,1] and N = 2, we get 2 intervals
—1/a 1 —1/a
[(Xo1, X4 +271¢], 5+ [Xo2,Xo0 +271/¢]
Then apply to each of these two intervals with N = 3, we get 6

intervals of size 2-1/@3-1/«_ At the step N, we get N! intervals
of size (N!)~1/e,



Cantor Set Cx

8,=1
6112y o2 ez
-
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Denote by K the union of these intervals and set Cx = NyKn;,
where
X = (Xn,j) n=23,
j=1,000,

N

Since Ky, is a covering of Cx by N! intervals of size (N!)~1/@

Ha(Cx) < lim NI[(N)~1/*)" = 1

So dimy(Cx) < a.



Cantor Measure px

8,=1 .
B2y Xaz
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0,=(1/4) -—— e e - S ———

For notational convenlence we set Oy = N~/ and reset
Xnj = Xn,j + =2, The convolution

k
1
ux = *iiZ(Z R561~~9k,1Xk,,-)
=

gives the uniform (probability) measure on Cy.



Fourier Transform of ux
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We want 1
fix(€) = O(l¢|~"=m)2),vm



Randomizing X

6,=1
X1 Xo2
8,=(112)"
B,=(1/3)"" Xs,1 X32 X33
X Xga

e4=(1/4)” -——— e - -——— - .- - ——

Now randomize Xy ; such that

Ca
XN,j ~ (N) X[ = "N +Ca]

Further, make Xy ;, N =2,3,---;j=1,---,Nindependent.

We end up with a random Cantor set Cx together with its
uniform distribution px. We will suppress the subscript X.



From Average to Deterministic Decay

We first prove the desired Fourier decay estimate in the
average sense. Precisely, for any g, m € N4, we will show that
for some constant C = C(«, m, q),

E[|p(€)P9) < [¢|" (=9, w|¢| > C.

If this is proved, choose g > 2ma~" andlet ¢ = nc Z,|n| > C,
we get
;
E[jn] (= m)9|ia(m)P9] < ||~

2)001 ~ _
ELY  [n[C=m9a(mP9] < D |n| 7% < oo

In>C [n|=1

N _(1—-2\)a
a(n) = O(ln|~('"m)2), ass.



From nto &

Lemma: Let 1 be a probability measure supported on [0, 1] and
B > 0 such that fi(n) = O(|n|=?), then (&) = O(|¢]7).

Now since .
a(n) = O(In|~(~D%), as.

We obtain ,
) = o(j¢)" "'~ m)%),vm, as.

Hence a < dimg(C), a.s.

Combine this with dimg(C) < dimy(C) < «, we see that C is
almost surely an a-dimensional Salem set.



Proof of The Average Decay

Forany N > 2,
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The Key Estimate
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Truncation
Iffork=2,--- N,

2¢k|€0y .. 04|V < =

Then
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Notice that

—1 4 _q7
2¢, Klgor . Ok | < g

is equivalent to
2c,'q KM (k= 1)) < ¢

and the LHS is increasing in k. So the inequality holds for
k=2,--- Nifand only if it holds for N, i.e.

265 g INTT[(N — 1)1 < [¢]

«

Let N = N(&) be the maximal one, we get,

Ca,gN“ (N — 1)1 < |€|* < Caq(N + 1)*9FNI



End of The Proof
From ¢, gN®9T*(N — 1)! < [£]* < Cq,q(N + 1)*9T N1, we get

(N = 1)l < caglél, <caq\£| AN+ 1)eate
Notice that for N large enough (depending on a, m, q),

(N+ 1)+, @ag)" < (N - 1))

Hence for £ large enough (depending on «, m, q), we have

1 (2ag)N
E[|a(&)P9)e < (2:a)7 Nﬂ”
< Caglél (N + 1)aq+a(21567)N

1

< ca,qlf\_a[(N— Dl
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