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Fourier Transform of Finite Measures

Define the Fourier transform of a probability measure µ on Rd

µ̂(ξ) =

∫
Rd

eiξ·xdµ(x), ∀ξ ∈ Rd

When µ is absolutely continuous with respect to the Lebesgue
measure,

µ̂(ξ) = f̂ (ξ) =
∫
Rd

eiξ·x f (x)dx

where f is an integrable function such that µ = fdx .

Question: Behavior of µ̂(ξ) as |ξ| → ∞?



Fourier Decay: Absolutely Continuous Measures

Riemann-Lebesgue Lemma: If f ∈ L1, then f̂ (ξ) = o(1).

This follows from the fact that when f = χ[a,b],

χ̂[a,b](ξ) =

∫ b

a
eiξxdx =

eiξb − eiξa

iξ
= O(|ξ|−1)

Question: Rate of decay of f̂ (ξ)?

Fact: For any 0 < α < 1, there exists compact set K such that
χ̂K (ξ) 6= O(|ξ|−α).

Fact: When f is continuous, the rate of decay of f̂ (ξ) is closely
related to the smoothness of f .



Fourier Decay: Singular Measures

What happens if µ is singular?

The simplest case is µ = δa, the Dirac measure at a,

δ̂a(ξ) =

∫
eiξxdδa = eiaξ

which does not vanish at∞. So the R-L lemma does not hold.

The next simplest case is µ = p1δa1 + p2δa2 ,

µ̂(ξ) = p1eia1ξ + p2eia2ξ

If a1 and a2 are commensurable, then µ̂(ξ) is periodic, so again
there is no decay.



Fourier Decay: Singular Measures

If a1 and a2 are incommensurable, say a1 = 1,a2 =
√

2, then

µ̂(2πk) = p1ei2πk + p2ei
√

2 2πk = p1 + p2ei
√

2 2πk

But ei
√

2 2πk can approximate any point on the circle as k →∞,
so µ̂(ξ) has no decay.

Question: Does there exist µ supported on a countable set, i.e.
µ =

∑
k pkδak , such that its Fourier transform

µ̂(ξ) =
∑

k

pkeiakξ

has decay at∞?



Fourier Decay: Singular Measures

The answer is No. This can be seen from either of the following.

Wiener’s Theorem:

lim
T→∞

1
2T

∫ T

−T
|µ̂(ξ)|2dξ =

∑
x

µ(x)2

If µ̂(ξ) = o(1), then LHS= 0. Conversely, if µ has no point
mass, then its Fourier transform decays in the average sense.

Theorem: If a compact set K carries a measure µ with
µ̂(ξ) = O(|ξ|−α) for some α > 0, then there exists N such that
the N-fold arithmetic sum K + · · ·+ K contains an interior point.
In particular, K generates R.



Fourier Decay: Cantor Set
Question: Does the converse of the above theorems hold? i.e.
If the set A generates R and carries a measure µ that charges
no point, dose µ̂(ξ) = o(1) necessarily hold?

The answer is No. A counterexample is given by the standard 1
3

Cantor set C. Notice that C + C = [0,2] and the Cantor
function ψ is continuous.



Fourier Decay: Cantor Set

What is d̂ψ(ξ)?

One nice way to think of C and µ = dψ is the so-called Bernoulli
convolution. For convenience we translate the Cantor set so
that it is centered at 0. Let {εk , k ≥ 1} be an i.i.d. sequence
with P(εk = −1) = P(εk = 1) = 1

2 . Set random variable

Y =
∞∑

k=1

εk
3k =

ε1
3

+
ε2
32 +

ε3
33 + · · ·

By the ternary expansion of points in Cantor set, the distribution
of X coincides the Cantor measure µ. Hence

µ = ∗∞k=1(
δ−3−k

2
+
δ3−k

2
) = lim

n→∞

∑
ε1,··· ,εn=±1

1
2n δ

ε1
3 +···+ εn

3n



Fourier Decay: Cantor Set

µ̂(ξ) = E [eiξX ] = E [ei
∑

k ξ
εk
3k ]

=
∏

k

E [eiξ εk
3k ]

=
∏

k

1
2
(ei− ξ

3k + ei ξ
3k )

=
∞∏

k=1

cos(
ξ

3k )

µ̂(3n2π) = [
n∏

k=1

cos(
3n2π

3k )][
∞∏

k=1

cos(
2π
3k )] = µ̂(2π) 6= 0

So the Cantor measure has no Fourier decay.



Fourier Decay: θ-Cantor Set

Similarly, for 0 < θ ≤ 1
2 , if we define random variable

Yθ =
∞∑

k=1

θkεk

Then Xθ induces the uniform distribution µθ on the θ-Cantor set
Cθ with dissection ratio θ and

µ̂θ(ξ) =
∞∏

k=1

cos(θkξ)

When θ = 1
2 ,C 1

2
= [−1,1] and

µ̂ 1
2
(ξ) =

∞∏
k=1

cos(
ξ

2k ) =
sin(ξ)
ξ

= O(|ξ|−1)



Fourier Decay: θ-Cantor Set

When θ < 1
2 , it turns out that the asymptotic behavior of µ̂θ(ξ) is

determined by the number-theoretic properties of θ.

Erdős-Salem-Zygmund Theorem: TFAE,
(i) µ̂θ(ξ) 6= o(1)
(ii) For any µ supported on Cθ, µ̂(ξ) 6= o(1)
(iii) θ−1 is a PV number
(iv) Cθ is a set of uniqueness

A (Pisot-Vijayaraghavan) PV number is an algebraic number
great than 1 whose conjugates are all inside the unit disc.

A set E is called a set of uniqueness if a Fourier series
converges to 0 outside E , then all the Fourier coefficients are 0.



Fourier Decay: θ-Cantor Set

To see how the number-theoretic condition (iii) comes in, notice
that by the same argument, for any λ 6= 0,

lim
n→∞

µ̂θ(λθ
−n2π) = [

∞∏
k=1

cos(λθ−k2π)]µ̂θ(λ2π)

Denote by ‖t‖ the distance from t to its nearest integer, then

∞∏
k=1

cos(λθ−k2π) =
∞∏

k=1

cos(‖λθ−k‖2π) ∼
∞∏

k=1

(1− 2 sin2(‖λθ−k‖π))

∼
∞∑

k=1

‖λθ−k‖2

Convergence of the last series characterizes θ−1 as a PV
number.



Salem Sets: Definition

Question: Rate of decay of µ̂θ(ξ)?

Theorem (Frostman): If K ⊂ Rd is an α-dimensional compact
set with α < d , and µ is supported on K such that
|µ̂(ξ)|2 = O(|ξ|−β), then β ≤ α.

Here the square can be understood via Plancherel theorem. If
β > d , then µ̂ ∈ L2(Rd) which contradicts the fact that µ is
singular.

The Fourier dimension of K is defined by

dimF (K ) = sup{β ≤ d : ∃µ s.t. |µ̂(ξ)|2 = O(|ξ|−β)}

By the above theorem dimF (K ) ≤ dimH(K ). When the equality
holds, K is called a Salem set.



Examples: Non-Salem Sets

Example of non-Salem set in R2: Let K = [0,1] ⊂ R2, then for
any µ supported on K ,

µ̂(ξ1, ξ2) =

∫
[0,1]

eiξ1x1+ξ20dµ(x1) = µ̂(ξ1)

So dimF (K ) = 0 < dimH(K ) = 1. (This can also be seen from
the fact that K generates R).

Example of non-Salem set in R1: If θ−1 is a PV number, then
dimF (Cθ) = 0 < dimH(Cθ) = logθ(1/2).



Examples: Salem Sets

0-dimensional Salem sets: All the 0-dimensional sets are
Salem sets since dimF (K ) ≤ dimH(K ).

d-dimensional Salem sets: Any open set in Rd is a Salem set
since we can always choose a bump function supported in it. Is
every set of positive measure a Salem set?

(d-1)-dimensional Salem sets: Let K = Sd−1 ⊂ Rd , then
µ̂(ξ) = O(|ξ|−

d−1
2 ). So dimF (K ) = dimH(K ) = d − 1. Note that

this rate of decay can never be improved by choosing different
measure. (Note also that Sd−1 + Sd−1 = B(0,2).)



Examples: θ-Cantor Set

Return to the question. We have known that when θ−1 is not a
PV number, µ̂θ(ξ) = o(1). What is its rate of decay?

Fact: There exists θ (can be arbitrarily small) such that
µ̂θ(ξ) = o(1) but µ̂θ(ξ) 6= O(|ξ|−β) for any β > 0. However, such
θ constitute a set of fractional dimension.

Question: Does there exist θ such that such that Cθ is a Salem
set?

No.



Salem’s Construction

Question (Beurling asked Salem): Given α ∈ (0,1), does there
exists Salem set of dimension α?

Salem’s construction: Cantor set with randomized dissection
ratios, (deterministic) incommensurable translations, and
increasing dissection numbers.

Bluhm’s variant: Cantor set with randomized translations and
increasing dissection numbers.



Kahane’s Salem Set

Kahane’s Salem set: If 2α < d and K ⊂ R+ is of dimension α,
then the image of K under the d-dimensional Brownian motion
is a.s. a 2α-dimensional Salem set.



Kaufman’s Salem Set

The first deterministic Salem set was found by Kaufman.

Kaufman’s Salem set: For α > 0, let E(α) be the set of real
numbers x such that ‖nx‖ ≤ n−1−α for infinitely many n, where
‖t‖ denotes the distance from t to the nearest integer. Then
E(α) is a Salem set of dimension 2

2+α .

Note that the above condition is the same as

|x − a
q
| ≤ q−(2+α)

for infinitely many rationals a
q .



Salem-Bluhm’s Construction

1
N
− 1

N1/α = (1− N−
1
α
+1)

1
N

≥ (1− 2−
1
α
+1)

1
N

>
cα
N

Where 0 < cα < 1− 2−
1
α
+1 is fixed. As long as

0 ≤ Xj ≤
cα
N
, j = 1, · · · ,N

we get N disjoint intervals.



Salem-Bluhm’s Construction

For each N, fix (XN,1, · · · ,XN,N) with

0 ≤ XN,j ≤
cα
N
, j = 1, · · · ,N

Start with interval [0,1] and N = 2, we get 2 intervals

[X2,1,X2,1 + 2−1/α],
1
2
+ [X2,2,X2,2 + 2−1/α]

Then apply to each of these two intervals with N = 3, we get 6
intervals of size 2−1/α3−1/α... At the step N, we get N! intervals
of size (N!)−1/α.



Cantor Set CX

Denote by KN the union of these intervals and set CX = ∩NKN ,
where

X = (XN,j)N=2,3,···
j=1,··· ,N

Since KN is a covering of CX by N! intervals of size (N!)−1/α

Hα(CX ) ≤ lim
N→∞

N![(N!)−1/α]α = 1

So dimH(CX ) ≤ α.



Cantor Measure µX

For notational convenience we set θN = N−1/α and reset
XN,j = XN,j +

j−1
N . The convolution

µX = ∗∞k=2(
k∑

j=1

1
k
δθ1···θk−1Xk,j )

gives the uniform (probability) measure on CX .



Fourier Transform of µX

µ̂X (ξ) =
∞∏

k=2

F(
k∑

j=1

1
k
δθ1···θk−1Xk,j )(ξ)

=
∞∏

k=2

(
1
k

k∑
j=1

eiξθ1···θk−1Xk,j )

We want
µ̂X (ξ) = O(|ξ|−(1−

1
m )α2 ), ∀m



Randomizing X

Now randomize XN,j such that

XN,j ∼ (
cα
N

)−1χ
[ j−1

N , j−1
N + cα

N ]

Further, make XN,j ,N = 2,3, · · · ; j = 1, · · · ,N independent.

We end up with a random Cantor set CX together with its
uniform distribution µX . We will suppress the subscript X .



From Average to Deterministic Decay

We first prove the desired Fourier decay estimate in the
average sense. Precisely, for any q,m ∈ N≥1, we will show that
for some constant C = C(α,m,q),

E [|µ̂(ξ)|2q] ≤ |ξ|−(1−
1
m )αq,∀|ξ| ≥ C.

If this is proved, choose q > 2mα−1 and let ξ = n ∈ Z, |n| ≥ C,
we get

E [|n|(1−
2
m )αq|µ̂(n)|2q] ≤ |n|−

1
mαq

E [
∑
|n|≥C

|n|(1−
2
m )αq|µ̂(n)|2q] ≤

∑
|n|≥1

|n|−2 <∞

µ̂(n) = O(|n|−(1−
2
m )α2 ), a.s.



From n to ξ

Lemma: Let µ be a probability measure supported on [0,1] and
β > 0 such that µ̂(n) = O(|n|−β), then µ̂(ξ) = O(|ξ|−β).

Now since
µ̂(n) = O(|n|−(1−

2
m )α2 ), a.s.

We obtain
µ̂(ξ) = O(|ξ|−(1−

2
m )α2 ),∀m, a.s.

Hence α ≤ dimF (C), a.s.

Combine this with dimF (C) ≤ dimH(C) ≤ α, we see that C is
almost surely an α-dimensional Salem set.



Proof of The Average Decay

For any N ≥ 2,

|µ̂(ξ)| =
∞∏

k=2

|1
k

k∑
j=1

eiξθ1···θk−1Xk,j |

≤
N∏

k=2

|1
k

k∑
j=1

eiξθ1···θk−1Xk,j |

|µ̂(ξ)|2q ≤
N∏

k=2

|1
k

k∑
j=1

eiξθ1···θk−1Xk,j |2q

E [|µ̂(ξ)|2q] ≤
N∏

k=2

E [|1
k

k∑
j=1

eiξθ1···θk−1Xk,j |2q]



The Key Estimate

E [|1
k

k∑
j=1

eiηXk,j |2q]

=
1

k2q E [(
k∑

j1,··· ,jq=1

eiη(Xk,j1
+···+Xk,jq ))(

k∑
i1,··· ,iq=1

e−iη(Xk,i1
+···+Xk,iq ))]

=
1

k2q E [
k∑

j1,··· ,jq=1

∑
{i1,··· ,iq}

={j1,··· ,jq}

1] +
1

k2q E [
∑

n1,··· ,nk∈Z
(n1,··· ,nk ) 6=0

eiη(n1Xk,1+···+nk Xk,k )]

≤ q!
kq + sup

j=1,··· ,k
n∈Z,n 6=0

|E [eiηnXk,j ]|

≤ qq

kq + 2c−1
α k |η|−1



Truncation
If for k = 2, · · · ,N,

2c−1
α k |ξθ1 . . . θk−1|−1 ≤ qq

kq

Then

E [|µ̂(ξ)|2q] ≤
N∏

k=2

E [|1
k

k∑
j=1

eiξθ1···θk−1Xk,j |2q]

≤
N∏

k=2

(
qq

kq + 2c−1
α k |ξθ1 . . . θk−1|−1)

≤
N∏

k=2

2qq

kq =
2NqqN

(N!)q =

[
(2

1
q q)N

N!

]q



N! ∼ |ξ|α

Notice that
2c−1

α k |ξθ1 . . . θk−1|−1 ≤ qq

kq

is equivalent to

2c−1
α q−qkq+1[(k − 1)!]

1
α ≤ |ξ|

and the LHS is increasing in k . So the inequality holds for
k = 2, · · · ,N if and only if it holds for N, i.e.

2c−1
α q−qNq+1[(N − 1)!]

1
α ≤ |ξ|

Let N = N(ξ) be the maximal one, we get,

cα,qNαq+α(N − 1)! ≤ |ξ|α ≤ cα,q(N + 1)αq+αN!



End of The Proof
From cα,qNαq+α(N − 1)! ≤ |ξ|α ≤ cα,q(N + 1)αq+αN!, we get

(N − 1)! ≤ c−1
α,q|ξ|α,

1
N!
≤ cα,q|ξ|−α(N + 1)αq+α

Notice that for N large enough (depending on α,m,q),

(N + 1)αq+α, (2
1
q q)N ≤ [(N − 1)!]

1
2m

Hence for ξ large enough (depending on α,m,q), we have

E [|µ̂(ξ)|2q]
1
q ≤ (2

1
q q)N

N!

≤ cα,q|ξ|−α(N + 1)αq+α(2
1
q q)N

≤ cα,q|ξ|−α[(N − 1)!]
1
m

≤ cα,q|ξ|−αc
− 1

m
α,q |ξ|

α
m = cα,m,q|ξ|−(1−

1
m )α


	Background



