Salem-Bluhm's Construction of Salem Sets

> Xianghong Chen (UW-Madison)

Summer School on
Harmonic Analysis, Geometric Measure Theory and Additive Combinatorics
Catalina Island, June 2012

Fourier Transform of Finite Measures

Define the Fourier transform of a probability measure μ on \mathbb{R}^{d}

$$
\hat{\mu}(\xi)=\int_{\mathbb{R}^{d}} e^{i \xi \cdot x} d \mu(x), \forall \xi \in \mathbb{R}^{d}
$$

When μ is absolutely continuous with respect to the Lebesgue measure,

$$
\hat{\mu}(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{i \xi \cdot x} f(x) d x
$$

where f is an integrable function such that $\mu=f d x$.
Question: Behavior of $\hat{\mu}(\xi)$ as $|\xi| \rightarrow \infty$?

Fourier Decay: Absolutely Continuous Measures

Riemann-Lebesgue Lemma: If $f \in L^{1}$, then $\hat{f}(\xi)=o(1)$.
This follows from the fact that when $f=\chi_{[a, b]}$,

$$
\widehat{\chi}_{[a, b]}(\xi)=\int_{a}^{b} e^{i \xi x} d x=\frac{e^{i \xi b}-e^{i \xi a}}{i \xi}=O\left(|\xi|^{-1}\right)
$$

Question: Rate of decay of $\hat{f}(\xi)$?
Fact: For any $0<\alpha<1$, there exists compact set K such that $\widehat{\chi}_{K}(\xi) \neq O\left(|\xi|^{-\alpha}\right)$.

Fact: When f is continuous, the rate of decay of $\hat{f}(\xi)$ is closely related to the smoothness of f.

Fourier Decay: Singular Measures

What happens if μ is singular?
The simplest case is $\mu=\delta_{a}$, the Dirac measure at a,

$$
\hat{\delta}_{a}(\xi)=\int e^{i \xi x} d \delta_{a}=e^{i a \xi}
$$

which does not vanish at ∞. So the R-L lemma does not hold.
The next simplest case is $\mu=p_{1} \delta_{a_{1}}+p_{2} \delta_{a_{2}}$,

$$
\hat{\mu}(\xi)=p_{1} e^{i a_{1} \xi}+p_{2} e^{i a_{2} \xi}
$$

If a_{1} and a_{2} are commensurable, then $\hat{\mu}(\xi)$ is periodic, so again there is no decay.

Fourier Decay: Singular Measures

If a_{1} and a_{2} are incommensurable, say $a_{1}=1, a_{2}=\sqrt{2}$, then

$$
\hat{\mu}(2 \pi k)=p_{1} e^{i 2 \pi k}+p_{2} e^{i \sqrt{2} 2 \pi k}=p_{1}+p_{2} e^{i \sqrt{2} 2 \pi k}
$$

But $e^{i \sqrt{2}} 2 \pi k$ can approximate any point on the circle as $k \rightarrow \infty$, so $\hat{\mu}(\xi)$ has no decay.

Question: Does there exist μ supported on a countable set, i.e. $\mu=\sum_{k} p_{k} \delta_{a_{k}}$, such that its Fourier transform

$$
\hat{\mu}(\xi)=\sum_{k} p_{k} e^{i i_{k} \xi}
$$

has decay at ∞ ?

Fourier Decay: Singular Measures

The answer is No. This can be seen from either of the following.
Wiener's Theorem:

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|\hat{\mu}(\xi)|^{2} d \xi=\sum_{x} \mu(x)^{2}
$$

If $\hat{\mu}(\xi)=o(1)$, then $\mathrm{LHS}=0$. Conversely, if μ has no point mass, then its Fourier transform decays in the average sense.

Theorem: If a compact set K carries a measure μ with $\hat{\mu}(\xi)=O\left(|\xi|^{-\alpha}\right)$ for some $\alpha>0$, then there exists N such that the N-fold arithmetic sum $K+\cdots+K$ contains an interior point. In particular, K generates \mathbb{R}.

Fourier Decay: Cantor Set

Question: Does the converse of the above theorems hold? i.e. If the set A generates \mathbb{R} and carries a measure μ that charges no point, dose $\hat{\mu}(\xi)=o(1)$ necessarily hold?

The answer is No. A counterexample is given by the standard $\frac{1}{3}$ Cantor set C. Notice that $C+C=[0,2]$ and the Cantor function ψ is continuous.

Fourier Decay: Cantor Set

What is $\widehat{d \psi}(\xi)$?
One nice way to think of C and $\mu=d \psi$ is the so-called Bernoulli convolution. For convenience we translate the Cantor set so that it is centered at 0 . Let $\left\{\epsilon_{k}, k \geq 1\right\}$ be an i.i.d. sequence with $P\left(\epsilon_{k}=-1\right)=P\left(\epsilon_{k}=1\right)=\frac{1}{2}$. Set random variable

$$
Y=\sum_{k=1}^{\infty} \frac{\epsilon_{k}}{3^{k}}=\frac{\epsilon_{1}}{3}+\frac{\epsilon_{2}}{3^{2}}+\frac{\epsilon_{3}}{3^{3}}+\cdots
$$

By the ternary expansion of points in Cantor set, the distribution of X coincides the Cantor measure μ. Hence

$$
\mu=*_{k=1}^{\infty}\left(\frac{\delta_{-3}-k}{2}+\frac{\delta_{3-k}}{2}\right)=\lim _{n \rightarrow \infty} \sum_{\epsilon_{1}, \cdots, \epsilon_{n}= \pm 1} \frac{1}{2^{n}} \delta_{\frac{\epsilon_{1}}{3}+\cdots+\frac{\epsilon_{n}}{3^{n}}}
$$

Fourier Decay: Cantor Set

$$
\begin{aligned}
& \hat{\mu}(\xi)=E\left[e^{i \xi X}\right]=E\left[e^{\left.i \Sigma \kappa \xi \frac{\xi k}{3{ }_{3}}\right]}\right. \\
& =\prod_{k} E\left[e^{i \xi^{\left.i \frac{\varepsilon k}{k x}\right]}}\right. \\
& =\prod_{k} \frac{1}{2}\left(e^{i-\frac{\xi}{3 k}}+e^{i \frac{\xi}{3 x}}\right) \\
& =\prod_{k=1}^{\infty} \cos \left(\frac{\xi}{3^{k}}\right) \\
& \hat{\mu}\left(3^{n} 2 \pi\right)=\left[\prod_{k=1}^{n} \cos \left(\frac{3^{n} 2 \pi}{3^{k}}\right)\right]\left[\prod_{k=1}^{\infty} \cos \left(\frac{2 \pi}{3^{k}}\right)\right]=\hat{\mu}(2 \pi) \neq 0
\end{aligned}
$$

So the Cantor measure has no Fourier decay.

Fourier Decay: θ-Cantor Set

Similarly, for $0<\theta \leq \frac{1}{2}$, if we define random variable

$$
Y_{\theta}=\sum_{k=1}^{\infty} \theta^{k} \epsilon_{k}
$$

Then X_{θ} induces the uniform distribution μ_{θ} on the θ-Cantor set C_{θ} with dissection ratio θ and

$$
\hat{\mu}_{\theta}(\xi)=\prod_{k=1}^{\infty} \cos \left(\theta^{k} \xi\right)
$$

When $\theta=\frac{1}{2}, C_{\frac{1}{2}}=[-1,1]$ and

$$
\hat{\mu}_{\frac{1}{2}}(\xi)=\prod_{k=1}^{\infty} \cos \left(\frac{\xi}{2^{k}}\right)=\frac{\sin (\xi)}{\xi}=O\left(|\xi|^{-1}\right)
$$

Fourier Decay: θ-Cantor Set

When $\theta<\frac{1}{2}$, it turns out that the asymptotic behavior of $\hat{\mu}_{\theta}(\xi)$ is determined by the number-theoretic properties of θ.

Erdős-Salem-Zygmund Theorem: TFAE,
(i) $\hat{\mu}_{\theta}(\xi) \neq o(1)$
(ii) For any μ supported on $C_{\theta}, \hat{\mu}(\xi) \neq 0(1)$
(iii) θ^{-1} is a PV number
(iv) C_{θ} is a set of uniqueness

A (Pisot-Vijayaraghavan) PV number is an algebraic number great than 1 whose conjugates are all inside the unit disc.

A set E is called a set of uniqueness if a Fourier series converges to 0 outside E, then all the Fourier coefficients are 0 .

Fourier Decay: θ-Cantor Set

To see how the number-theoretic condition (iii) comes in, notice that by the same argument, for any $\lambda \neq 0$,

$$
\lim _{n \rightarrow \infty} \hat{\mu}_{\theta}\left(\lambda \theta^{-n} 2 \pi\right)=\left[\prod_{k=1}^{\infty} \cos \left(\lambda \theta^{-k} 2 \pi\right)\right] \hat{\mu}_{\theta}(\lambda 2 \pi)
$$

Denote by $\|t\|$ the distance from t to its nearest integer, then

$$
\begin{aligned}
\prod_{k=1}^{\infty} \cos \left(\lambda \theta^{-k} 2 \pi\right) & =\prod_{k=1}^{\infty} \cos \left(\left\|\lambda \theta^{-k}\right\| 2 \pi\right) \sim \prod_{k=1}^{\infty}\left(1-2 \sin ^{2}\left(\left\|\lambda \theta^{-k}\right\| \pi\right)\right) \\
& \sim \sum_{k=1}^{\infty}\left\|\lambda \theta^{-k}\right\|^{2}
\end{aligned}
$$

Convergence of the last series characterizes θ^{-1} as a PV number.

Salem Sets: Definition

Question: Rate of decay of $\hat{\mu}_{\theta}(\xi)$?
Theorem (Frostman): If $K \subset \mathbb{R}^{d}$ is an α-dimensional compact set with $\alpha<d$, and μ is supported on K such that $|\hat{\mu}(\xi)|^{2}=O\left(|\xi|^{-\beta}\right)$, then $\beta \leq \alpha$.

Here the square can be understood via Plancherel theorem. If $\beta>d$, then $\hat{\mu} \in L^{2}\left(\mathbb{R}^{d}\right)$ which contradicts the fact that μ is singular.

The Fourier dimension of K is defined by

$$
\operatorname{dim}_{F}(K)=\sup \left\{\beta \leq d: \exists \mu \text { s.t. }|\hat{\mu}(\xi)|^{2}=O\left(|\xi|^{-\beta}\right)\right\}
$$

By the above theorem $\operatorname{dim}_{F}(K) \leq \operatorname{dim}_{H}(K)$. When the equality holds, K is called a Salem set.

Examples: Non-Salem Sets

Example of non-Salem set in \mathbb{R}^{2} : Let $K=[0,1] \subset \mathbb{R}^{2}$, then for any μ supported on K,

$$
\hat{\mu}\left(\xi_{1}, \xi_{2}\right)=\int_{[0,1]} e^{i \xi_{1} x_{1}+\xi_{2} 0} d \mu\left(x_{1}\right)=\hat{\mu}\left(\xi_{1}\right)
$$

So $\operatorname{dim}_{F}(K)=0<\operatorname{dim}_{H}(K)=1$. (This can also be seen from the fact that K generates \mathbb{R}).

Example of non-Salem set in \mathbb{R}^{1} : If θ^{-1} is a PV number, then $\operatorname{dim}_{F}\left(C_{\theta}\right)=0<\operatorname{dim}_{H}\left(C_{\theta}\right)=\log _{\theta}(1 / 2)$.

Examples: Salem Sets

0-dimensional Salem sets: All the 0-dimensional sets are Salem sets since $\operatorname{dim}_{F}(K) \leq \operatorname{dim}_{H}(K)$.
d-dimensional Salem sets: Any open set in \mathbb{R}^{d} is a Salem set since we can always choose a bump function supported in it. Is every set of positive measure a Salem set?
(d-1)-dimensional Salem sets: Let $K=S^{d-1} \subset \mathbb{R}^{d}$, then $\hat{\mu}(\xi)=O\left(|\xi|^{-\frac{d-1}{2}}\right)$. So $\operatorname{dim}_{F}(K)=\operatorname{dim}_{H}(K)=d-1$. Note that this rate of decay can never be improved by choosing different measure. (Note also that $S^{d-1}+S^{d-1}=B(0,2)$.)

Examples: θ-Cantor Set

Return to the question. We have known that when θ^{-1} is not a PV number, $\hat{\mu}_{\theta}(\xi)=o(1)$. What is its rate of decay?

Fact: There exists θ (can be arbitrarily small) such that $\hat{\mu}_{\theta}(\xi)=o(1)$ but $\hat{\mu}_{\theta}(\xi) \neq O\left(|\xi|^{-\beta}\right)$ for any $\beta>0$. However, such θ constitute a set of fractional dimension.

Question: Does there exist θ such that such that C_{θ} is a Salem set?

No.

Salem's Construction

Question (Beurling asked Salem): Given $\alpha \in(0,1)$, does there exists Salem set of dimension α ?

Salem's construction: Cantor set with randomized dissection ratios, (deterministic) incommensurable translations, and increasing dissection numbers.

Bluhm's variant: Cantor set with randomized translations and increasing dissection numbers.

Kahane's Salem Set

Kahane's Salem set: If $2 \alpha<d$ and $K \subset \mathbb{R}_{+}$is of dimension α, then the image of K under the d-dimensional Brownian motion is a.s. a 2α-dimensional Salem set.

Kaufman's Salem Set

The first deterministic Salem set was found by Kaufman.
Kaufman's Salem set: For $\alpha>0$, let $E(\alpha)$ be the set of real numbers x such that $\|n x\| \leq n^{-1-\alpha}$ for infinitely many n, where $\|t\|$ denotes the distance from t to the nearest integer. Then $E(\alpha)$ is a Salem set of dimension $\frac{2}{2+\alpha}$.

Note that the above condition is the same as

$$
\left|x-\frac{a}{q}\right| \leq q^{-(2+\alpha)}
$$

for infinitely many rationals $\frac{a}{q}$.

Salem-Bluhm's Construction

$$
\begin{aligned}
\frac{1}{N}-\frac{1}{N^{1 / \alpha}} & =\left(1-N^{-\frac{1}{\alpha}+1}\right) \frac{1}{N} \\
& \geq\left(1-2^{-\frac{1}{\alpha}+1}\right) \frac{1}{N} \\
& >\frac{c_{\alpha}}{N}
\end{aligned}
$$

Where $0<c_{\alpha}<1-2^{-\frac{1}{\alpha}+1}$ is fixed. As long as

$$
0 \leq X_{j} \leq \frac{c_{\alpha}}{N}, j=1, \cdots, N
$$

we get N disjoint intervals.

Salem-Bluhm's Construction

For each N, fix $\left(X_{N, 1}, \cdots, X_{N, N}\right)$ with

$$
0 \leq X_{N, j} \leq \frac{c_{\alpha}}{N}, j=1, \cdots, N
$$

Start with interval $[0,1]$ and $N=2$, we get 2 intervals

$$
\left[X_{2,1}, X_{2,1}+2^{-1 / \alpha}\right], \frac{1}{2}+\left[X_{2,2}, X_{2,2}+2^{-1 / \alpha}\right]
$$

Then apply to each of these two intervals with $N=3$, we get 6 intervals of size $2^{-1 / \alpha} 3^{-1 / \alpha} \ldots$ At the step N, we get N ! intervals of size $(N!)^{-1 / \alpha}$.

Cantor Set C_{X}

Denote by K_{N} the union of these intervals and set $C_{X}=\cap_{N} K_{N}$, where

$$
X=\left(X_{N, j}\right)_{\substack{N=2,3, \ldots \\ j=1, \ldots, N}}
$$

Since K_{N} is a covering of C_{X} by N ! intervals of size $(N!)^{-1 / \alpha}$

$$
H_{\alpha}\left(C_{X}\right) \leq \lim _{N \rightarrow \infty} N!\left[(N!)^{-1 / \alpha}\right]^{\alpha}=1
$$

So $\operatorname{dim}_{H}\left(C_{X}\right) \leq \alpha$.

Cantor Measure μ_{X}

For notational convenience we set $\theta_{N}=N^{-1 / \alpha}$ and reset $X_{N, j}=X_{N, j}+\frac{j-1}{N}$. The convolution

$$
\mu_{X}=*_{k=2}^{\infty}\left(\sum_{j=1}^{k} \frac{1}{k} \delta_{\theta_{1} \cdots \theta_{k-1}} x_{k, j}\right)
$$

gives the uniform (probability) measure on C_{X}.

Fourier Transform of μ_{X}

$$
\begin{aligned}
& \theta_{1}=1 \\
& \theta_{2}=(1 / 2)^{1 / a} X_{2,1} \quad X_{2,2}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mu}_{X}(\xi)=\prod_{k=2}^{\infty} \mathcal{F}\left(\sum_{j=1}^{k} \frac{1}{k} \delta_{\theta_{1} \cdots \theta_{k-1} x_{k, j}}\right)(\xi) \\
& =\prod_{k=2}^{\infty}\left(\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right)
\end{aligned}
$$

We want

$$
\hat{\mu}_{X}(\xi)=O\left(|\xi|^{-\left(1-\frac{1}{m}\right) \frac{\alpha}{2}}\right), \forall m
$$

Randomizing X

$$
\begin{aligned}
& \theta_{1}=1 \\
& \theta_{2}=(1 / 2)^{1 / a} X_{2,1} \quad X_{2,2}
\end{aligned}
$$

Now randomize $X_{N, j}$ such that

$$
X_{N, j} \sim\left(\frac{C_{\alpha}}{N}\right)^{-1} \chi_{\left[\frac{i-1}{N}, \frac{j-1}{N}+\frac{c_{\alpha}}{N}\right]}
$$

Further, make $X_{N, j}, N=2,3, \cdots ; j=1, \cdots, N$ independent.
We end up with a random Cantor set C_{X} together with its uniform distribution μ_{X}. We will suppress the subscript X.

From Average to Deterministic Decay

We first prove the desired Fourier decay estimate in the average sense. Precisely, for any $q, m \in \mathbb{N}_{\geq 1}$, we will show that for some constant $C=C(\alpha, m, q)$,

$$
E\left[|\hat{\mu}(\xi)|^{2 q}\right] \leq|\xi|^{-\left(1-\frac{1}{m}\right) \alpha q}, \forall|\xi| \geq C .
$$

If this is proved, choose $q>2 m \alpha^{-1}$ and let $\xi=n \in \mathbb{Z},|n| \geq C$, we get

$$
\begin{gathered}
E\left[|n|^{\left(1-\frac{2}{m}\right) \alpha q}|\hat{\mu}(n)|^{2 q}\right] \leq|n|^{-\frac{1}{m} \alpha q} \\
E\left[\sum_{|n| \geq C}|n|^{\left(1-\frac{2}{m}\right) \alpha q}|\hat{\mu}(n)|^{2 q}\right] \leq \sum_{|n| \geq 1}|n|^{-2}<\infty \\
\hat{\mu}(n)=O\left(|n|^{-\left(1-\frac{2}{m}\right) \frac{\alpha}{2}}\right), \text { a.s. }
\end{gathered}
$$

From n to ξ

Lemma: Let μ be a probability measure supported on $[0,1]$ and $\beta>0$ such that $\hat{\mu}(n)=O\left(|n|^{-\beta}\right)$, then $\hat{\mu}(\xi)=O\left(|\xi|^{-\beta}\right)$.

Now since

$$
\hat{\mu}(n)=O\left(|n|^{-\left(1-\frac{2}{m}\right) \frac{\alpha}{2}}\right), \text { a.s. }
$$

We obtain

$$
\hat{\mu}(\xi)=O\left(|\xi|^{-\left(1-\frac{2}{m}\right) \frac{\alpha}{2}}\right), \forall m, \text { a.s. }
$$

Hence $\alpha \leq \operatorname{dim}_{F}(C)$, a.s.
Combine this with $\operatorname{dim}_{F}(C) \leq \operatorname{dim}_{H}(C) \leq \alpha$, we see that C is almost surely an α-dimensional Salem set.

Proof of The Average Decay

For any $N \geq 2$,

$$
\begin{aligned}
|\hat{\mu}(\xi)| & =\prod_{k=2}^{\infty}\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right| \\
& \leq \prod_{k=2}^{N}\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right| \\
|\hat{\mu}(\xi)|^{2 q} & \leq \prod_{k=2}^{N}\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right|^{2 q} \\
E\left[|\hat{\mu}(\xi)|^{2 q}\right] & \leq \prod_{k=2}^{N} E\left[\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right|^{2 q}\right]
\end{aligned}
$$

The Key Estimate

$$
\begin{aligned}
& E\left[\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \eta X_{k, j}}\right|^{2 q}\right] \\
= & \frac{1}{k^{2 q}} E\left[\left(\sum_{j_{1}, \cdots, j_{q}=1}^{k} e^{i \eta\left(X_{k, j_{1}}+\cdots+x_{k, j_{q}}\right)}\right)\left(\sum_{i_{1}, \cdots, i_{q}=1}^{k} e^{-i \eta\left(X_{k, i_{1}}+\cdots+x_{k, i_{q}}\right)}\right)\right] \\
= & \frac{1}{k^{2 q}} E\left[\sum_{j_{1}, \cdots, j_{q}=1}^{k} \sum_{\substack{\left\{i_{1}, \cdots, i_{q}\right\} \\
=\left\{i_{1}, \ldots, j_{q}\right\}}} 1\right]+\frac{1}{k^{2 q}} E\left[\sum_{\substack{n_{1}, \cdots, n_{k} \in \mathbb{Z} \\
\left(n_{1}, \cdots, n_{k}\right) \neq 0}} e^{i \eta\left(n_{1} X_{k, 1}+\cdots+n_{k} X_{k, k}\right)}\right] \\
\leq & \frac{q!}{k^{q}}+\sup _{\substack{j=1, \cdots, k \\
n \in \tilde{Z}, n \neq 0}}\left|E\left[e^{i \eta n x_{k, j}}\right]\right| \\
\leq & \frac{q^{q}}{k^{q}}+2 c_{\alpha}^{-1} k|\eta|^{-1}
\end{aligned}
$$

Truncation

If for $k=2, \cdots, N$,

$$
2 c_{\alpha}^{-1} k\left|\xi \theta_{1} \ldots \theta_{k-1}\right|^{-1} \leq \frac{q^{q}}{k^{q}}
$$

Then

$$
\begin{aligned}
E\left[|\hat{\mu}(\xi)|^{2 q}\right] & \leq \prod_{k=2}^{N} E\left[\left|\frac{1}{k} \sum_{j=1}^{k} e^{i \xi \theta_{1} \cdots \theta_{k-1} x_{k, j}}\right|^{2 q}\right] \\
& \leq \prod_{k=2}^{N}\left(\frac{q^{q}}{k^{q}}+2 c_{\alpha}^{-1} k\left|\xi \theta_{1} \ldots \theta_{k-1}\right|^{-1}\right) \\
& \leq \prod_{k=2}^{N} \frac{2 q^{q}}{k^{q}}=\frac{2^{N} q^{q N}}{(N!)^{q}}=\left[\frac{\left(2^{\frac{1}{q}} q\right)^{N}}{N!}\right]^{q}
\end{aligned}
$$

$N!\sim|\xi|^{\alpha}$

Notice that

$$
2 c_{\alpha}^{-1} k\left|\xi \theta_{1} \ldots \theta_{k-1}\right|^{-1} \leq \frac{q^{q}}{k^{q}}
$$

is equivalent to

$$
2 c_{\alpha}^{-1} q^{-q} k^{q+1}[(k-1)!]^{\frac{1}{\alpha}} \leq|\xi|
$$

and the LHS is increasing in k. So the inequality holds for $k=2, \cdots, N$ if and only if it holds for N, i.e.

$$
2 c_{\alpha}^{-1} q^{-q} N^{q+1}[(N-1)!]^{\frac{1}{\alpha}} \leq|\xi|
$$

Let $N=N(\xi)$ be the maximal one, we get,

$$
c_{\alpha, q} N^{\alpha q+\alpha}(N-1)!\leq|\xi|^{\alpha} \leq c_{\alpha, q}(N+1)^{\alpha q+\alpha} N!
$$

End of The Proof

From $c_{\alpha, q} N^{\alpha q+\alpha}(N-1)!\leq|\xi|^{\alpha} \leq c_{\alpha, q}(N+1)^{\alpha q+\alpha} N$!, we get

$$
(N-1)!\leq c_{\alpha, q}^{-1}|\xi|^{\alpha}, \quad \frac{1}{N!} \leq c_{\alpha, q}|\xi|^{-\alpha}(N+1)^{\alpha q+\alpha}
$$

Notice that for N large enough (depending on α, m, q),

$$
(N+1)^{\alpha q+\alpha}, \quad\left(2^{\frac{1}{q}} q\right)^{N} \leq[(N-1)!]^{\frac{1}{2 m}}
$$

Hence for ξ large enough (depending on α, m, q), we have

$$
\begin{aligned}
E\left[|\hat{\mu}(\xi)|^{2 q}\right]^{\frac{1}{q}} & \leq \frac{\left(2^{\frac{1}{q}} q\right)^{N}}{N!} \\
& \leq c_{\alpha, q}|\xi|^{-\alpha}(N+1)^{\alpha q+\alpha}\left(2^{\frac{1}{q}} q\right)^{N} \\
& \leq c_{\alpha, q}|\xi|^{-\alpha}[(N-1)!]^{\frac{1}{m}} \\
& \leq c_{\alpha, q}|\xi|^{-\alpha} c_{\alpha, q}^{-\frac{1}{m}}|\xi|^{\frac{\alpha}{m}}=c_{\alpha, m, q}|\xi|^{-\left(1-\frac{1}{m}\right) \alpha}
\end{aligned}
$$

