Let n > 1 be a fixed integer, and let

Sy = (6 516P) € R xR : [¢ — (-1Yer] < 1/2)

where j = 1,2 and e; = (1,0,---,0). Denote by o; the surface measure on
S;. Our goal is to prove the following.

Theorem 1 (L2-bilinear restriction theorem).

(1) | fro1f202]| Lan+1y < CrgllfillL2on 1 f2ll22(00)

3
for any q > Z—L

This range of ¢ is sharp up to endpoint.

Lemma 2 (epsilon-removal). To prove Theorem 1, it suffices to prove

(2) ’\f101f202!\L37ﬁ(B(07R)) < Cno R f1ll L2 (o)l f2llL2(00), B> 1
for all o > 0.
Denote (2) by
n+3
(2 x 2 —, Q).
R*(2x2— — 1,oz)

Lemma 2 will follow from iterating the following.

Lemma 3 (induction on scale).

N n—+3 N n+3 7
3) R (2><2%n7+1,a) =R (2X2%7n+1,max((1 §)a, CF))

for any 6 > 0, where C is independent of J.

The main tool for proving Lemma 3 is the following.

Lemma 4 (wave packet decomposition).

fioj =Y cror,

T;
where (i) T; ranges over VR X -+ x /R x 0o tubes with initial positions
z(T;) € RV?Z" x {0}
and pointing in directions
§(Ty) € R™/227 x {1}

that are normal to S;, i.e.
1
(&(T5), §|§(Tj)l2) <€ 5j.

(ii) The wave packet ¢ty s essentially supported on Tj, and q;Tj 18 Sup-
ported in an O(R™Y?)-neighborhood of (£(T}), FIE(TH)[?) in S;.
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(iii) The coefficients cr; satisfy Bessel’s inequality
1/2
(Y ler,2) " = 11l
j

Since ¢r;(7,t) solves the free Schrodinger equation, by the Plancherel
theorem we have the following.

Lemma 5 (conservation of energy).

@ Y en Gtz =1 Y 61,5 0)lp2@m ~ (HTH)'?

T,€T, T;€T,
for allt € R.
Now assuming R*(2 x 2 — Zﬁ’, @) and [|f;]l2 = 1, we need to show

1SN enerérn onll nis < R(-9)a | ROS,
1 2

Lt (Bo,R)

By a pigeonholing argument, we may assume that ¢y, = ¢1, e, = ca.
Lemma 6 (pigeonhole principle). It suffices to show
(1-6)a Cs 1/2 1/2
6 I 2 D dndnl a8 BT+ RO)HT)A(#HT)
ThHeT1 12Ty
for any collections T of T}, j = 1,2.
To utilize the induction hypothesis, we split Bp into O(R®?) many balls

B of radius R'~%. Denote by B the collection of such balls. We can thus
estimate the left-hand side of (5) by

SN > dnonl s,

BeB Ti€T; 12Ty

For each T} € Ty, we associate $ 1 many balls B € B which “captures most
intersection” between 77 and Tg; write 77 ~ B (and similarly for Ty € Ty).
We will prove (5) by showing the following estimates.

Lemma 7 (local part).

S (1-8)a 1/2 1/2
(6) Bz;” Z; Z; o1 0Ll gy ) & RO H#T) A (HT)
& ALE AP
Lemma 8 (global part).
(7) 1y > O onl ns S ROOH#T1) P (#T2) 2,

T €Ty THeT>
T, ~B
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Proof of Lemma 7. Applying the induction hypothesis to each ball B, we
can estimate the left-hand side of (6) by

S RSO KT € Ty : Ty ~ BY) P (#{Tr € T2 : Tb ~ B})
BeB
By the Cauchy-Schwarz inequality, this can be bounded by

R(lfé)a(z Y 1T1~B>1/2(Z > 1T2~B>

BeBT €Ty BeBT>€Ts

1/2

1/2

which by Fubini’s theorem becomes

R(l—é)a( Z Z 1T1~B>1/2< Z Z 1T2~B)1/2
T,€T1 BeB ToeTs BeB
<RI (T 2 (#T) 12,
as desired. O

Lemma 8 follows from interpolating between the following estimates.
Lemma 9 (L!-estimate).

1Y " ononllim S REHT)Y(#T)Y2

T €Ty THeTo
T1~B

Proof. By Holder’s inequality it suffices to show
| Z o1, |2y S RY2(#T;)?

T;€T;
where j = 1,2. But this follows directly from (4) and integrating in ¢t. [

Lemma 10 (L?-estimate).

®) 1>, D ¢nénlam £ RORTAHT) A (#T) 2.

€Ty Th€Ty
To prove Lemma 10, we start with the following observation.
Lemma 11 (transversal waves).
(9) |6 éms | 2oy S R7V/A
Proof. Use Plancherel’s theorem as in Wolff’s paper. ([

We now split Bg into balls of radius v/R. Denote by q the collection of
such balls, and denote

a(B):={¢€q:qC B}.
For q € q, denote
Tj(q) ={T; € T;: ;N Rq# 0}, j=1,2
T?B(q) ={T; € T1(q) : T\ »~ B}.
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By a pigeonholing argument, we may assume that
#T5(q) =y, j=1,2
#{qeq: RqNTi} ~ \.
Lemma 10 will follow from the following.
Lemma 12 (fine-scale decomposition).
1) > D> D énonllisg SRRV A(HT)(#T.).
g€q(B) T1€T7B(q) T2€T2(q)

To estimate the left-hand side, we expand

H Z Z ¢T1¢T2||%2(Rn+l)

T eTTB (q) T2€T2(q)
as

(11) S Y Y % / o7, 61 D7 Dy vl
T1€TTE (q) T2€T2(q) T{€TTB (q) T5€T2(q)

Since the Fourier transform of the integrand is supported near

(€, 5160P) + (@ 5160) — (€L 5IEEP) — (&b 5IERP),
we see that the integral vanishes unless

S+&=86+&
€1 + [€f* = [&1] + [&2*.
Lemma 13 (geometric constraint). The last two equations imply
€ —&)=(L-&) L& -&)=(&-&)
For fixed & and &), denote
m(&1, &) ={&: (G - &) L (& - &)}

and

v(q) == max #{T] € TTP(q) : &1 € m(&1,8)}-

Lemma 14 (fine-scale estimate).

DY <1>T1¢>T2||L2 < ROR™VPu(q)(#T7 (0)(#T2(a)).

T1€T7B(q) T2€T2(q
Proof. This now follows from (11) and (9). O

To conclude the proof of Theorem 1, it remains to prove the following
(Kakeya-type) combinatorial estimate.

Lemma 15 (coarse-scale estimate).

ST v(@)(#T1(q) (#T2(q)) £ RE(HT1) (#T2).

qeq(B)



Notice that by our assumption, #T2(q) ~ pe and

doHTUD S D D lnamrsgu

q€q(B) q€q(B) Th€T

%Z)\l

T €T
= (#T1)\.
So, to prove Lemma, 15, it suffices to show the following.

Lemma 16.
#To

v(w) § B A1ft2

for all qo € q(B).

Proof. We will use a “bush” argument centered at go. Fix & and &,. Denote

D= {1 € T7P(q0) - €] € (&1, 8)}

We need to show that
#To

T, < R .
#Th R A1pt2

Consider the incidence set
I={(q,T1,T5) Eqx T} x Ty :
RqNT{ #0,R°qN Ty #0,dist(q,q0) L R-“°R}.
On the one hand, we have

DD YD O

T{GT’l qEq:RéqﬁT{;é(D (STQGTQ
dist(q,q0)ZR—COp RO4NT2#0

-y Y

T{ET’l qEq:R‘SqﬁT{?ﬁ@
dist(q,q0)RR™C9R

=< Z R\ o
T/ €T
= (#T) RN\ pia.
On the other hand,

#= D > > !

T2€T2 T{ €T, qea:ROqNT]#0,ROqNTo 0
dist(q,qo)gR_C‘sR

é Z Z RC’&

To€eTs T{ eT’1
3geq:ROqNT] #0, RO qNTo#0,dist(q,90)ZRCOR

S (#T2) R,

Combining these two estimates for #I gives the desired result. O



