Let $n \geq 1$ be a fixed integer, and let

$$S_j = \left\{ (\xi, \frac{1}{2} |\xi|^2) \in \mathbb{R}^n \times \mathbb{R} : |\xi - (-1)^j e_1| < 1/2 \right\}$$

where j = 1, 2 and $e_1 = (1, 0, \dots, 0)$. Denote by σ_j the surface measure on S_i . Our goal is to prove the following.

Theorem 1 (L^2 -bilinear restriction theorem).

(1)
$$\|\widehat{f_1\sigma_1}\widehat{f_2\sigma_2}\|_{L^q(\mathbb{R}^{n+1})} \le C_{n,q}\|f_1\|_{L^2(\sigma_1)}\|f_2\|_{L^2(\sigma_2)}$$
 for any $q > \frac{n+3}{n+1}$.

This range of q is sharp up to endpoint.

Lemma 2 (epsilon-removal). To prove Theorem 1, it suffices to prove

(2)
$$\|\widehat{f_1\sigma_1}\widehat{f_2\sigma_2}\|_{L^{\frac{n+3}{n+1}}(B(0,R))} \le C_{n,\alpha}R^{\alpha}\|f_1\|_{L^2(\sigma_1)}\|f_2\|_{L^2(\sigma_2)}, \ R \ge 1$$
 for all $\alpha > 0$.

Denote (2) by

$$R^*(2 \times 2 \to \frac{n+3}{n+1}, \alpha).$$

Lemma 2 will follow from iterating the following.

Lemma 3 (induction on scale).

(3)
$$R^*\left(2\times 2\to \frac{n+3}{n+1},\alpha\right) \Rightarrow R^*\left(2\times 2\to \frac{n+3}{n+1},\max((1-\delta)\alpha,C\delta)\right)$$

for any $\delta > 0$, where C is independent of δ .

The main tool for proving Lemma 3 is the following.

Lemma 4 (wave packet decomposition).

$$\widehat{f_j \sigma_j} = \sum_{T_i} c_{T_j} \phi_{T_j}$$

where (i) T_j ranges over $\sqrt{R} \times \cdots \times \sqrt{R} \times \infty$ tubes with initial positions

$$x(T_j) \in R^{1/2} \mathbb{Z}^n \times \{0\}$$

and pointing in directions

$$\xi(T_j) \in R^{-1/2} \mathbb{Z}^n \times \{-1\}$$

that are normal to S_j , i.e.

$$(\xi(T_j), \frac{1}{2}|\xi(T_j)|^2) \in S_j.$$

(ii) The wave packet ϕ_{T_j} is essentially supported on T_j , and $\hat{\phi}_{T_j}$ is supported in an $O(R^{-1/2})$ -neighborhood of $(\xi(T_j), \frac{1}{2}|\xi(T_j)|^2)$ in S_j .

(iii) The coefficients c_{T_i} satisfy Bessel's inequality

$$\left(\sum_{T_j} |c_{T_j}|^2\right)^{1/2} \approx ||f_j||_2.$$

Since $\phi_{T_j}(x,t)$ solves the free Schrödinger equation, by the Plancherel theorem we have the following.

Lemma 5 (conservation of energy).

(4)
$$\| \sum_{T_j \in \mathbf{T}_j} \phi_{T_j}(\cdot, t) \|_{L^2(\mathbb{R}^n)} = \| \sum_{T_j \in \mathbf{T}_j} \phi_{T_j}(\cdot, 0) \|_{L^2(\mathbb{R}^n)} \approx (\#\mathbf{T}_j)^{1/2}$$

for all $t \in \mathbb{R}$.

Now assuming $R^*(2 \times 2 \to \frac{n+3}{n+1}, \alpha)$ and $||f_j||_2 = 1$, we need to show

$$\| \sum_{T_1} \sum_{T_2} c_{T_1} c_{T_2} \phi_{T_1} \phi_{T_2} \|_{L^{\frac{n+3}{n+1}}(B(0,R))} \lesssim R^{(1-\delta)\alpha} + R^{C\delta}.$$

By a pigeonholing argument, we may assume that $c_{T_1} = c_1$, $c_{T_2} = c_2$.

Lemma 6 (pigeonhole principle). It suffices to show

(5)
$$\|\sum_{T_1 \in \mathbf{T}_1} \sum_{T_2 \in \mathbf{T}_2} \phi_{T_1} \phi_{T_2} \|_{L^{\frac{n+3}{n+1}}(B_R)} \lesssim (R^{(1-\delta)\alpha} + R^{C\delta}) (\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2}$$

for any collections \mathbf{T}_j of T_j , j = 1, 2.

To utilize the induction hypothesis, we split B_R into $O(R^{C\delta})$ many balls B of radius $R^{1-\delta}$. Denote by \mathcal{B} the collection of such balls. We can thus estimate the left-hand side of (5) by

$$\sum_{B \in \mathcal{B}} \| \sum_{T_1 \in \mathbf{T}_1} \sum_{T_2 \in \mathbf{T}_2} \phi_{T_1} \phi_{T_2} \|_{L^{\frac{n+3}{n+1}}(B)}.$$

For each $T_1 \in \mathbf{T}_1$, we associate $\lesssim 1$ many balls $B \in \mathcal{B}$ which "captures most intersection" between T_1 and \mathbf{T}_2 ; write $T_1 \sim B$ (and similarly for $T_2 \in \mathbf{T}_2$). We will prove (5) by showing the following estimates.

Lemma 7 (local part).

(6)
$$\sum_{B \in \mathcal{B}} \| \sum_{\substack{T_1 \in \mathbf{T}_1 \\ T_1 \sim B}} \sum_{\substack{T_2 \in \mathbf{T}_2 \\ T_2 \sim B}} \phi_{T_1} \phi_{T_2} \|_{L^{\frac{n+3}{n+1}}(B)} \lessapprox R^{(1-\delta)\alpha} (\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2}.$$

Lemma 8 (global part).

(7)
$$\| \sum_{\substack{T_1 \in \mathbf{T}_1 \\ T_1 \nsim B}} \sum_{T_2 \in \mathbf{T}_2} \phi_{T_1} \phi_{T_2} \|_{L^{\frac{n+3}{n+1}}(B)} \lessapprox R^{C\delta} (\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2}.$$

Proof of Lemma 7. Applying the induction hypothesis to each ball B, we can estimate the left-hand side of (6) by

$$\sum_{B \in \mathcal{B}} R^{(1-\delta)\alpha} \big(\# \{ T_1 \in \mathbf{T}_1 : T_1 \sim B \} \big)^{1/2} \big(\# \{ T_2 \in \mathbf{T}_2 : T_2 \sim B \} \big)^{1/2}.$$

By the Cauchy-Schwarz inequality, this can be bounded by

$$R^{(1-\delta)\alpha} \Big(\sum_{B \in \mathcal{B}} \sum_{T_1 \in \mathbf{T}_1} 1_{T_1 \sim B} \Big)^{1/2} \Big(\sum_{B \in \mathcal{B}} \sum_{T_2 \in \mathbf{T}_2} 1_{T_2 \sim B} \Big)^{1/2}.$$

which by Fubini's theorem becomes

$$R^{(1-\delta)\alpha} \Big(\sum_{T_1 \in \mathbf{T}_1} \sum_{B \in \mathcal{B}} 1_{T_1 \sim B} \Big)^{1/2} \Big(\sum_{T_2 \in \mathbf{T}_2} \sum_{B \in \mathcal{B}} 1_{T_2 \sim B} \Big)^{1/2}$$

$$\lesssim R^{(1-\delta)\alpha} (\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2},$$

as desired. \Box

Lemma 8 follows from interpolating between the following estimates.

Lemma 9 (L^1 -estimate).

$$\| \sum_{\substack{T_1 \in \mathbf{T}_1 \\ T_1 \nsim B}} \sum_{T_2 \in \mathbf{T}_2} \phi_{T_1} \phi_{T_2} \|_{L^1(B)} \lesssim R(\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2}.$$

Proof. By Hölder's inequality it suffices to show

$$\|\sum_{T_j \in \mathbf{T}_j} \phi_{T_j}\|_{L^2(B)} \lesssim R^{1/2} (\#\mathbf{T}_j)^{1/2}$$

where j = 1, 2. But this follows directly from (4) and integrating in t. \square Lemma 10 (L^2 -estimate).

(8)
$$\| \sum_{\substack{T_1 \in \mathbf{T}_1 \\ T_1 \nsim B}} \sum_{T_2 \in \mathbf{T}_2} \phi_{T_1} \phi_{T_2} \|_{L^2(B)} \lessapprox R^{C\delta} R^{-(n-1)/4} (\#\mathbf{T}_1)^{1/2} (\#\mathbf{T}_2)^{1/2}.$$

To prove Lemma 10, we start with the following observation.

Lemma 11 (transversal waves).

(9)
$$\|\phi_{T_1}\phi_{T_2}\|_{L^2(\mathbb{R}^{n+1})} \lesssim R^{-(n-1)/4}.$$

Proof. Use Plancherel's theorem as in Wolff's paper.

We now split B_R into balls of radius \sqrt{R} . Denote by \mathbf{q} the collection of such balls, and denote

$$\mathbf{q}(B) := \{ q \in \mathbf{q} : q \subset B \}.$$

For $q \in \mathbf{q}$, denote

$$\mathbf{T}_{j}(q) := \{ T_{j} \in \mathbf{T}_{j} : T_{j} \cap R^{\delta} q \neq \emptyset \}, \ j = 1, 2$$
$$\mathbf{T}_{1}^{\sim B}(q) := \{ T_{i} \in \mathbf{T}_{1}(q) : T_{1} \nsim B \}.$$

By a pigeonholing argument, we may assume that

$$\#\mathbf{T}_j(q) \approx \mu_j, \ j = 1, 2$$

 $\#\{q \in \mathbf{q} : R^{\delta}q \cap T_1\} \approx \lambda_1.$

Lemma 10 will follow from the following.

Lemma 12 (fine-scale decomposition).

(10)
$$\sum_{q \in \mathbf{q}(B)} \| \sum_{T_1 \in \mathbf{T}_1^{\sim B}(q)} \sum_{T_2 \in \mathbf{T}_2(q)} \phi_{T_1} \phi_{T_2} \|_{L^2(q)}^2 \lessapprox R^{C\delta} R^{-(n-1)/2} (\#\mathbf{T}_1) (\#\mathbf{T}_2).$$

To estimate the left-hand side, we expand

$$\| \sum_{T_1 \in \mathbf{T}_1^{\sim B}(q)} \sum_{T_2 \in \mathbf{T}_2(q)} \phi_{T_1} \phi_{T_2} \|_{L^2(\mathbb{R}^{n+1})}^2$$

as

(11)
$$\sum_{T_1 \in \mathbf{T}_1^{\sim B}(q)} \sum_{T_2 \in \mathbf{T}_2(q)} \sum_{T_1' \in \mathbf{T}_1^{\sim B}(q)} \sum_{T_2' \in \mathbf{T}_2(q)} \int_{\mathbb{R}^{n+1}} \phi_{T_1} \phi_{T_2} \overline{\phi_{T_1'} \phi_{T_2'}} dx dt.$$

Since the Fourier transform of the integrand is supported near

$$(\xi_1,\frac{1}{2}|\xi_1|^2)+(\xi_2,\frac{1}{2}|\xi_2|^2)-(\xi_1',\frac{1}{2}|\xi_1'|^2)-(\xi_2',\frac{1}{2}|\xi_2'|^2),$$

we see that the integral vanishes unless

$$\xi_1 + \xi_2 = \xi_1' + \xi_2'$$
$$|\xi_1|^2 + |\xi_2|^2 = |\xi_1'|^2 + |\xi_2'|^2$$

Lemma 13 (geometric constraint). The last two equations imply

$$(\xi_1' - \xi_1) = (\xi_2 - \xi_2') \perp (\xi_1' - \xi_2) = (\xi_1 - \xi_2').$$

For fixed ξ_1 and ξ_2' , denote

$$\pi(\xi_1, \xi_2') := \{ \xi_1' : (\xi_1' - \xi_1) \perp (\xi_1 - \xi_2') \}$$

and

$$\nu(q) := \max_{\xi_1, \xi_2'} \# \{ T_1' \in \mathbf{T}_1^{\sim B}(q) : \xi_1' \in \pi(\xi_1, \xi_2') \}.$$

Lemma 14 (fine-scale estimate).

$$\| \sum_{T_1 \in \mathbf{T}_1^{\sim B}(q)} \sum_{T_2 \in \mathbf{T}_2(q)} \phi_{T_1} \phi_{T_2} \|_{L^2(q)}^2 \lesssim R^{C\delta} R^{-(n-1)/2} \nu(q) (\# \mathbf{T}_1^{\sim B}(q)) (\# \mathbf{T}_2(q)).$$

Proof. This now follows from (11) and (9).

To conclude the proof of Theorem 1, it remains to prove the following (Kakeya-type) combinatorial estimate.

Lemma 15 (coarse-scale estimate).

$$\sum_{q \in \mathbf{q}(B)} \nu(q)(\#\mathbf{T}_1(q))(\#\mathbf{T}_2(q)) \lessapprox R^{C\delta}(\#\mathbf{T}_1)(\#\mathbf{T}_2).$$

Notice that by our assumption, $\#\mathbf{T}_2(q) \approx \mu_2$ and

$$\sum_{q \in \mathbf{q}(B)} #\mathbf{T}_1(q) \le \sum_{q \in \mathbf{q}(B)} \sum_{T_1 \in \mathbf{T}_1} 1_{T_1 \cap R^{\delta}q \neq \emptyset}$$

$$\approx \sum_{T_1 \in \mathbf{T}_1} \lambda_1$$

$$= (#\mathbf{T}_1)\lambda_1.$$

So, to prove Lemma 15, it suffices to show the following.

Lemma 16.

$$\nu(q_0) \lessapprox R^{C\delta} \frac{\# \mathbf{T}_2}{\lambda_1 \mu_2}$$

for all $q_0 \in \mathbf{q}(B)$.

Proof. We will use a "bush" argument centered at q_0 . Fix ξ_1 and ξ_2' . Denote

$$\mathbf{T}_1' := \{ T_1' \in \mathbf{T}_1^{\sim B}(q_0) : \xi_1' \in \pi(\xi_1, \xi_2') \}.$$

We need to show that

$$\#\mathbf{T}_1' \lesssim R^{C\delta} \frac{\#\mathbf{T}_2}{\lambda_1 \mu_2}.$$

Consider the incidence set

$$\mathbf{I} = \{ (q, T_1', T_2) \in \mathbf{q} \times \mathbf{T}_1' \times \mathbf{T}_2 : R^{\delta} q \cap T_1' \neq \emptyset, R^{\delta} q \cap T_2 \neq \emptyset, \operatorname{dist}(q, q_0) \geq R^{-C\delta} R \}.$$

On the one hand, we have

$$#\mathbf{I} = \sum_{T_1' \in \mathbf{T}_1'} \sum_{\substack{q \in \mathbf{q}: R^{\delta}q \cap T_1' \neq \emptyset \\ \operatorname{dist}(q, q_0) \geq R^{-C\delta}R}} \sum_{\substack{T_2 \in \mathbf{T}_2 \\ R^{\delta}q \cap T_2 \neq \emptyset}} 1$$

$$\approx \sum_{T_1' \in \mathbf{T}_1'} \sum_{\substack{q \in \mathbf{q}: R^{\delta}q \cap T_1' \neq \emptyset \\ \operatorname{dist}(q, q_0) \geq R^{-C\delta}R}} \mu_2$$

$$\geq \sum_{T_1' \in \mathbf{T}_1'} R^{-C\delta} \lambda_1 \mu_2$$

$$= (#\mathbf{T}_1') R^{-C\delta} \lambda_1 \mu_2.$$

On the other hand,

$$\begin{split} \#\mathbf{I} &= \sum_{T_2 \in \mathbf{T}_2} \sum_{T_1' \in \mathbf{T}_1'} \sum_{\substack{q \in \mathbf{q}: R^{\delta}q \cap T_1' \neq \emptyset, R^{\delta}q \cap T_2 \neq \emptyset \\ \operatorname{dist}(q, q_0) \gtrsim R^{-C\delta}R}} 1 \\ &\lessapprox \sum_{T_2 \in \mathbf{T}_2} \sum_{\substack{T_1' \in \mathbf{T}_1' \\ \exists q \in \mathbf{q}: R^{\delta}q \cap T_1' \neq \emptyset, R^{\delta}q \cap T_2 \neq \emptyset, \operatorname{dist}(q, q_0) \gtrapprox R^{-C\delta}R}} R^{C\delta} \\ &\lessapprox (\#\mathbf{T}_2) R^{C\delta}. \end{split}$$

Combining these two estimates for #I gives the desired result.